|
import gradio as gr |
|
import torch |
|
import numpy as np |
|
from transformers import OwlViTProcessor, OwlViTForObjectDetection |
|
from torchvision import transforms |
|
from PIL import Image, ImageDraw |
|
import cv2 |
|
import torch.nn.functional as F |
|
import tempfile |
|
import os |
|
from SuperGluePretrainedNetwork.models.matching import Matching |
|
from SuperGluePretrainedNetwork.models.utils import read_image |
|
import matplotlib.pyplot as plt |
|
import matplotlib.cm as cm |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
mixin = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32") |
|
processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32") |
|
model = mixin.to(device) |
|
|
|
matching = Matching({ |
|
'superpoint': {'nms_radius': 4, 'keypoint_threshold': 0.005, 'max_keypoints': 1024}, |
|
'superglue': {'weights': 'outdoor', 'sinkhorn_iterations': 20, 'match_threshold': 0.2} |
|
}).eval().to(device) |
|
|
|
|
|
def preprocess_image(image): |
|
transform = transforms.Compose([ |
|
transforms.Resize((224, 224)), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), |
|
]) |
|
return transform(image).unsqueeze(0) |
|
|
|
def save_array_to_temp_image(arr): |
|
rgb_arr = cv2.cvtColor(arr, cv2.COLOR_BGR2RGB) |
|
img = Image.fromarray(rgb_arr) |
|
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png') |
|
temp_file_name = temp_file.name |
|
temp_file.close() |
|
img.save(temp_file_name) |
|
return temp_file_name |
|
|
|
def stitch_images(images): |
|
if not images: |
|
return Image.new('RGB', (100, 100), color='gray') |
|
|
|
max_width = max([img.width for img in images]) |
|
total_height = sum(img.height for img in images) |
|
|
|
composite = Image.new('RGB', (max_width, total_height)) |
|
|
|
y_offset = 0 |
|
for img in images: |
|
composite.paste(img, (0, y_offset)) |
|
y_offset += img.height |
|
|
|
return composite |
|
|
|
|
|
def detect_and_crop(target_image, query_image, threshold=0.5, nms_threshold=0.3): |
|
target_sizes = torch.Tensor([target_image.size[::-1]]) |
|
inputs = processor(images=target_image, query_images=query_image, return_tensors="pt").to(device) |
|
with torch.no_grad(): |
|
outputs = model.image_guided_detection(**inputs) |
|
|
|
img = cv2.cvtColor(np.array(target_image), cv2.COLOR_BGR2RGB) |
|
outputs.logits = outputs.logits.cpu() |
|
outputs.target_pred_boxes = outputs.target_pred_boxes.cpu() |
|
|
|
results = processor.post_process_image_guided_detection(outputs=outputs, threshold=threshold, nms_threshold=nms_threshold, target_sizes=target_sizes) |
|
boxes, scores = results[0]["boxes"], results[0]["scores"] |
|
|
|
if len(boxes) == 0: |
|
return [], None |
|
|
|
filtered_boxes = [] |
|
for box in boxes: |
|
x1, y1, x2, y2 = [int(i) for i in box.tolist()] |
|
cropped_img = img[y1:y2, x1:x2] |
|
if cropped_img.size != 0: |
|
filtered_boxes.append(cropped_img) |
|
|
|
draw = ImageDraw.Draw(target_image) |
|
for box in boxes: |
|
draw.rectangle(box.tolist(), outline="red", width=3) |
|
|
|
return filtered_boxes, target_image |
|
|
|
def image_matching_no_pyramid(query_img, target_img, visualize=True): |
|
temp_query = save_array_to_temp_image(np.array(query_img)) |
|
temp_target = save_array_to_temp_image(np.array(target_img)) |
|
|
|
image1, inp1, scales1 = read_image(temp_target, device, [640*2], 0, True) |
|
image0, inp0, scales0 = read_image(temp_query, device, [640*2], 0, True) |
|
|
|
if image0 is None or image1 is None: |
|
return None |
|
|
|
pred = matching({'image0': inp0, 'image1': inp1}) |
|
pred = {k: v[0] for k, v in pred.items()} |
|
kpts0, kpts1 = pred['keypoints0'], pred['keypoints1'] |
|
matches, conf = pred['matches0'], pred['matching_scores0'] |
|
|
|
valid = matches > -1 |
|
mkpts0 = kpts0[valid] |
|
mkpts1 = kpts1[matches[valid]] |
|
mconf = conf[valid] |
|
color = cm.jet(mconf.detach().cpu().numpy())[:len(mkpts0)] |
|
|
|
valid_count = np.sum(valid.tolist()) |
|
|
|
mkpts0_np = mkpts0.cpu().numpy() |
|
mkpts1_np = mkpts1.cpu().numpy() |
|
|
|
try: |
|
H, inliers = cv2.findHomography(mkpts0_np, mkpts1_np, cv2.RANSAC, 5.0) |
|
except: |
|
inliers = 0 |
|
|
|
num_inliers = np.sum(inliers) |
|
|
|
if visualize: |
|
visualized_img = unified_matching_plot2( |
|
image0, image1, kpts0, kpts1, mkpts0, mkpts1, color, ['Matches'], True, False, True, 'Matches', []) |
|
else: |
|
visualized_img = None |
|
|
|
return { |
|
'valid': [valid_count], |
|
'inliers': [num_inliers], |
|
'visualized_image': [visualized_img] |
|
} |
|
|
|
def check_object_in_image(query_image, target_image, threshold=50, scale_factor=[0.33, 0.66, 1]): |
|
images_to_return = [] |
|
cropped_images, bbox_image = detect_and_crop(target_image, query_image) |
|
|
|
temp_files = [save_array_to_temp_image(i) for i in cropped_images] |
|
crop_results = [image_matching_no_pyramid(query_image, Image.open(i), visualize=True) for i in temp_files] |
|
|
|
cropped_visuals = [] |
|
cropped_inliers = [] |
|
for result in crop_results: |
|
if result: |
|
for img in result['visualized_image']: |
|
cropped_visuals.append(Image.fromarray(img)) |
|
for inliers_ in result['inliers']: |
|
cropped_inliers.append(inliers_) |
|
|
|
images_to_return.append(stitch_images(cropped_visuals)) |
|
|
|
is_present = any(value >= threshold for value in cropped_inliers) |
|
|
|
return { |
|
'is_present': is_present, |
|
'images': images_to_return, |
|
'object detection inliers': [int(i) for i in cropped_inliers], |
|
'bbox_image': bbox_image, |
|
} |
|
|
|
def interface(poster_source, media_source, threshold, scale_factor): |
|
result1 = check_object_in_image(poster_source, media_source, threshold, scale_factor) |
|
if result1['is_present']: |
|
return result1 |
|
|
|
result2 = check_object_in_image(poster_source, media_source, threshold, scale_factor) |
|
return result2 if result2['is_present'] else result1 |
|
|
|
iface = gr.Interface( |
|
fn=interface, |
|
inputs=[ |
|
gr.Image(type="pil", label="Upload a Query Image (Poster)"), |
|
gr.Image(type="pil", label="Upload a Target Image (Media)"), |
|
gr.Slider(minimum=0, maximum=100, step=1, value=50, label="Threshold"), |
|
gr.CheckboxGroup(choices=[0.33, 0.66, 1.0], value=[0.33, 0.66, 1.0], label="Scale Factors") |
|
], |
|
outputs=[ |
|
gr.JSON(label="Result") |
|
], |
|
title="Object Detection in Image", |
|
description=""" |
|
**Instructions:** |
|
|
|
1. **Upload a Query Image (Poster)**: Select an image file that contains the object you want to detect. |
|
2. **Upload a Target Image (Media)**: Select an image file where you want to detect the object. |
|
3. **Set Threshold**: Adjust the slider to set the threshold for object detection. |
|
4. **Set Scale Factors**: Select the scale factors for image pyramid. |
|
5. **View Results**: The result will show whether the object is present in the image along with additional details. |
|
""" |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
|