HaryaniAnjali's picture
Update app.py
6099979 verified
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import plotly.graph_objects as go
import io
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
import os
import json
import requests
import re
import torch
import openai
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import base64
from io import BytesIO
# Set plot styling
sns.set(style="whitegrid")
plt.rcParams["figure.figsize"] = (10, 6)
# Global variables for API keys and AI models
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY", "")
HF_API_TOKEN = os.environ.get("HF_API_TOKEN", "")
data_assistant = None
def set_openai_key(api_key):
"""Set the OpenAI API key."""
global OPENAI_API_KEY
OPENAI_API_KEY = api_key
openai.api_key = api_key
return "OpenAI API key set successfully!"
def set_hf_token(api_token):
"""Set the Hugging Face API token."""
global HF_API_TOKEN, data_assistant
HF_API_TOKEN = api_token
os.environ["TRANSFORMERS_TOKEN"] = api_token
data_assistant = initialize_ai_models()
return "Hugging Face token set successfully!"
# Initialize AI Models
def initialize_ai_models():
"""Initialize the AI models for data analysis."""
# Initialize OpenAI API (keys will be loaded from environment variables)
# Note: Users need to set OPENAI_API_KEY in their Hugging Face Space secrets
# Initialize Hugging Face model for data recommendations
try:
tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
model = AutoModelForCausalLM.from_pretrained("distilgpt2")
data_assistant = pipeline("text-generation", model=model, tokenizer=tokenizer)
except Exception as e:
print(f"Error loading model: {e}")
# Fallback to a smaller model if the main one fails to load
try:
data_assistant = pipeline("text-generation", model="distilgpt2")
except:
data_assistant = None
return data_assistant
def read_file(file):
"""Read different file formats into a pandas DataFrame with robust separator detection."""
if file is None:
return None
file_name = file.name if hasattr(file, 'name') else ''
print(f"Reading file: {file_name}")
try:
# Handle different file types
if file_name.endswith('.csv'):
# Try multiple separators in sequence
separators = [',', ';', '\t', '|']
errors = []
for sep in separators:
try:
# For each attempt, we need a fresh file upload
# Try with the current separator
df = pd.read_csv(file, sep=sep)
# If we got a reasonable number of columns, it probably worked
if len(df.columns) > 1:
print(f"Successfully read CSV with separator '{sep}': {df.shape}")
# Convert columns to appropriate types
for col in df.columns:
# Try to convert string columns to numeric
if df[col].dtype == 'object':
df[col] = pd.to_numeric(df[col], errors='ignore')
return df
else:
errors.append(f"Only got {len(df.columns)} columns with '{sep}' separator")
except Exception as e:
errors.append(f"Error with '{sep}' separator: {str(e)}")
# If we reach here, all separators failed
error_msg = "\n".join(errors)
print(f"All separators failed: {error_msg}")
# Make one final attempt with Python's CSV sniffer
try:
df = pd.read_csv(file, sep=None, engine='python')
if len(df.columns) > 1:
print(f"Read CSV with automatic separator detection: {df.shape}")
return df
else:
return "Could not detect the appropriate separator for this CSV file."
except Exception as e:
print(f"Error with automatic separator detection: {e}")
return "Could not read the CSV file. Please check the file format and try again."
elif file_name.endswith(('.xls', '.xlsx')):
return pd.read_excel(file)
elif file_name.endswith('.json'):
return pd.read_json(file)
elif file_name.endswith('.txt'):
# Try tab separator first for text files
try:
df = pd.read_csv(file, delimiter='\t')
if len(df.columns) > 1:
return df
else:
# Try with automatic separator detection
return pd.read_csv(file, sep=None, engine='python')
except Exception as e:
print(f"Error reading text file: {e}")
return f"Error reading text file: {str(e)}"
else:
return "Unsupported file format. Please upload .csv, .xlsx, .xls, .json, or .txt files."
except Exception as e:
print(f"Error reading file: {str(e)}")
return f"Error reading file: {str(e)}"
def analyze_data(df):
"""Generate basic statistics and information about the dataset."""
if not isinstance(df, pd.DataFrame):
return df # Return error message if df is not a DataFrame
# Basic info
info = {}
info['Shape'] = df.shape
info['Columns'] = df.columns.tolist()
info['Data Types'] = df.dtypes.astype(str).to_dict()
# Check for missing values
missing_values = df.isnull().sum()
if missing_values.sum() > 0:
info['Missing Values'] = missing_values[missing_values > 0].to_dict()
else:
info['Missing Values'] = "No missing values found"
# Data quality issues
info['Data Quality Issues'] = identify_data_quality_issues(df)
# Basic statistics for numerical columns
numeric_cols = df.select_dtypes(include=[np.number]).columns.tolist()
if numeric_cols:
info['Numeric Columns'] = numeric_cols
info['Statistics'] = df[numeric_cols].describe().to_html()
# Check for outliers
outliers = detect_outliers(df, numeric_cols)
if outliers:
info['Outliers'] = outliers
# Identify categorical columns
categorical_cols = df.select_dtypes(include=['object', 'category']).columns.tolist()
if categorical_cols:
info['Categorical Columns'] = categorical_cols
# Get unique value counts for categorical columns (limit to first 5 for brevity)
cat_counts = {}
for col in categorical_cols[:5]: # Limit to first 5 categorical columns
cat_counts[col] = df[col].value_counts().head(10).to_dict() # Show top 10 values
info['Category Counts'] = cat_counts
return info
def identify_data_quality_issues(df):
"""Identify common data quality issues."""
issues = {}
# Check for duplicate rows
duplicate_count = df.duplicated().sum()
if duplicate_count > 0:
issues['Duplicate Rows'] = duplicate_count
# Check for high cardinality in categorical columns
categorical_cols = df.select_dtypes(include=['object', 'category']).columns.tolist()
high_cardinality = {}
for col in categorical_cols:
unique_count = df[col].nunique()
if unique_count > 50: # Arbitrary threshold
high_cardinality[col] = unique_count
if high_cardinality:
issues['High Cardinality Columns'] = high_cardinality
# Check for potential date columns not properly formatted
potential_date_cols = []
for col in df.select_dtypes(include=['object']).columns:
# Sample the first 10 non-null values
sample = df[col].dropna().head(10).tolist()
if all(isinstance(x, str) for x in sample):
# Simple date pattern check
date_pattern = re.compile(r'\d{1,4}[-/\.]\d{1,2}[-/\.]\d{1,4}')
if any(date_pattern.search(str(x)) for x in sample):
potential_date_cols.append(col)
if potential_date_cols:
issues['Potential Date Columns'] = potential_date_cols
# Check for columns with mostly missing values
high_missing = {}
for col in df.columns:
missing_pct = df[col].isnull().mean() * 100
if missing_pct > 50: # More than 50% missing
high_missing[col] = f"{missing_pct:.2f}%"
if high_missing:
issues['Columns with >50% Missing'] = high_missing
return issues
def detect_outliers(df, numeric_cols):
"""Detect outliers in numeric columns using IQR method."""
outliers = {}
for col in numeric_cols:
# Skip columns with too many unique values (potentially ID columns)
if df[col].nunique() > df.shape[0] * 0.9:
continue
# Calculate IQR
Q1 = df[col].quantile(0.25)
Q3 = df[col].quantile(0.75)
IQR = Q3 - Q1
# Define outlier bounds
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
# Count outliers
outlier_count = ((df[col] < lower_bound) | (df[col] > upper_bound)).sum()
if outlier_count > 0:
outlier_pct = (outlier_count / df.shape[0]) * 100
if outlier_pct > 1: # Only report if more than 1% are outliers
outliers[col] = {
'count': outlier_count,
'percentage': f"{outlier_pct:.2f}%",
'lower_bound': lower_bound,
'upper_bound': upper_bound
}
return outliers
def generate_visualizations(df):
"""Generate appropriate visualizations based on the data types."""
if not isinstance(df, pd.DataFrame):
print(f"Not a DataFrame: {type(df)}")
return df # Return error message if df is not a DataFrame
print(f"Starting visualization generation for DataFrame with shape: {df.shape}")
visualizations = {}
# Identify column types
numeric_cols = df.select_dtypes(include=[np.number]).columns.tolist()
categorical_cols = df.select_dtypes(include=['object', 'category']).columns.tolist()
date_cols = [col for col in df.columns if df[col].dtype == 'datetime64[ns]' or
(df[col].dtype == 'object' and pd.to_datetime(df[col], errors='coerce').notna().all())]
print(f"Found {len(numeric_cols)} numeric columns: {numeric_cols}")
print(f"Found {len(categorical_cols)} categorical columns: {categorical_cols}")
print(f"Found {len(date_cols)} date columns: {date_cols}")
try:
# Simple test plot to verify Plotly is working
if len(df) > 0 and len(df.columns) > 0:
col = df.columns[0]
try:
test_data = df[col].head(100)
fig = px.histogram(x=test_data, title=f"Test Plot for {col}")
visualizations['test_plot'] = fig
print(f"Generated test plot for column: {col}")
except Exception as e:
print(f"Error creating test plot: {e}")
# 1. Distribution plots for numeric columns (first 5)
if numeric_cols:
for i, col in enumerate(numeric_cols[:5]): # Limit to first 5 numeric columns
try:
fig = px.histogram(df, x=col, marginal="box", title=f"Distribution of {col}")
visualizations[f'dist_{col}'] = fig
print(f"Generated distribution plot for {col}")
except Exception as e:
print(f"Error creating histogram for {col}: {e}")
# 2. Bar charts for categorical columns (first 5)
if categorical_cols:
for i, col in enumerate(categorical_cols[:5]): # Limit to first 5 categorical columns
try:
# Get value counts and handle potential large number of categories
value_counts = df[col].value_counts().nlargest(10) # Top 10 categories
# Convert indices to strings to ensure they can be plotted
value_counts.index = value_counts.index.astype(str)
fig = px.bar(x=value_counts.index, y=value_counts.values,
title=f"Top 10 categories in {col}")
fig.update_xaxes(title=col)
fig.update_yaxes(title="Count")
visualizations[f'bar_{col}'] = fig
print(f"Generated bar chart for {col}")
except Exception as e:
print(f"Error creating bar chart for {col}: {e}")
# 3. Correlation heatmap for numeric columns
if len(numeric_cols) > 1:
try:
corr_matrix = df[numeric_cols].corr()
fig = px.imshow(corr_matrix, text_auto=True, aspect="auto",
title="Correlation Heatmap")
visualizations['correlation'] = fig
print("Generated correlation heatmap")
except Exception as e:
print(f"Error creating correlation heatmap: {e}")
# 4. Scatter plot matrix (first 3 numeric columns to keep it manageable)
if len(numeric_cols) >= 2:
try:
plot_cols = numeric_cols[:3] # Limit to first 3 numeric columns
fig = px.scatter_matrix(df, dimensions=plot_cols, title="Scatter Plot Matrix")
visualizations['scatter_matrix'] = fig
print("Generated scatter plot matrix")
except Exception as e:
print(f"Error creating scatter matrix: {e}")
# 5. Time series plot if date column exists
if date_cols and numeric_cols:
try:
date_col = date_cols[0] # Use the first date column
# Convert to datetime if not already
if df[date_col].dtype != 'datetime64[ns]':
df[date_col] = pd.to_datetime(df[date_col], errors='coerce')
# Sort by date
df_sorted = df.sort_values(by=date_col)
# Create time series for first numeric column
num_col = numeric_cols[0]
fig = px.line(df_sorted, x=date_col, y=num_col,
title=f"{num_col} over Time")
visualizations['time_series'] = fig
print("Generated time series plot")
except Exception as e:
print(f"Error creating time series plot: {e}")
# 6. PCA visualization if enough numeric columns
if len(numeric_cols) >= 3:
try:
# Apply PCA to numeric data
numeric_data = df[numeric_cols].select_dtypes(include=[np.number])
# Fill NaN values with mean for PCA
numeric_data = numeric_data.fillna(numeric_data.mean())
# Standardize the data
scaler = StandardScaler()
scaled_data = scaler.fit_transform(numeric_data)
# Apply PCA with 2 components
pca = PCA(n_components=2)
pca_result = pca.fit_transform(scaled_data)
# Create a DataFrame with PCA results
pca_df = pd.DataFrame(data=pca_result, columns=['PC1', 'PC2'])
# If categorical column exists, use it for color
if categorical_cols:
cat_col = categorical_cols[0]
pca_df[cat_col] = df[cat_col].values
fig = px.scatter(pca_df, x='PC1', y='PC2', color=cat_col,
title="PCA Visualization")
else:
fig = px.scatter(pca_df, x='PC1', y='PC2',
title="PCA Visualization")
variance_ratio = pca.explained_variance_ratio_
fig.update_layout(
annotations=[
dict(
text=f"PC1 explained variance: {variance_ratio[0]:.2f}",
showarrow=False,
x=0.5,
y=1.05,
xref="paper",
yref="paper"
),
dict(
text=f"PC2 explained variance: {variance_ratio[1]:.2f}",
showarrow=False,
x=0.5,
y=1.02,
xref="paper",
yref="paper"
)
]
)
visualizations['pca'] = fig
print("Generated PCA visualization")
except Exception as e:
print(f"Error creating PCA visualization: {e}")
except Exception as e:
print(f"Error in visualization generation: {e}")
print(f"Generated {len(visualizations)} visualizations")
# If no visualizations were created, add a fallback
if not visualizations:
visualizations['fallback'] = generate_fallback_visualization(df)
return visualizations
def generate_fallback_visualization(df):
"""Generate a simple fallback visualization using matplotlib."""
try:
plt.figure(figsize=(10, 6))
# Choose what to plot based on data types
numeric_cols = df.select_dtypes(include=[np.number]).columns.tolist()
if numeric_cols:
# Plot first numeric column
col = numeric_cols[0]
plt.hist(df[col].dropna(), bins=20)
plt.title(f"Distribution of {col}")
plt.xlabel(col)
plt.ylabel("Count")
else:
# Plot count of first column values
col = df.columns[0]
value_counts = df[col].value_counts().nlargest(10)
plt.bar(value_counts.index.astype(str), value_counts.values)
plt.title(f"Top values for {col}")
plt.xticks(rotation=45)
plt.ylabel("Count")
# Create a plotly figure from matplotlib
fig = go.Figure()
# Add trace based on the type of plot
if numeric_cols:
hist, bin_edges = np.histogram(df[numeric_cols[0]].dropna(), bins=20)
bin_centers = (bin_edges[:-1] + bin_edges[1:]) / 2
fig.add_trace(go.Bar(x=bin_centers, y=hist, name=numeric_cols[0]))
fig.update_layout(title=f"Distribution of {numeric_cols[0]}")
else:
col = df.columns[0]
counts = df[col].value_counts().nlargest(10)
fig.add_trace(go.Bar(x=counts.index.astype(str), y=counts.values, name=col))
fig.update_layout(title=f"Top values for {col}")
return fig
except Exception as e:
print(f"Error generating fallback visualization: {e}")
# Create an empty plotly figure as last resort
fig = go.Figure()
fig.add_annotation(text="Could not generate visualization", showarrow=False)
fig.update_layout(title="Visualization Error")
return fig
def get_ai_cleaning_recommendations(df):
"""Get AI-powered recommendations for data cleaning using OpenAI."""
try:
# Check if OpenAI API key is available
global OPENAI_API_KEY
if not OPENAI_API_KEY:
return """
## OpenAI API Key Not Configured
Please set your OpenAI API key in the Settings tab to get AI-powered data cleaning recommendations.
Without an API key, here are some general recommendations:
* Handle missing values by either removing rows or imputing with mean/median/mode
* Remove duplicate rows if present
* Convert date-like string columns to proper datetime format
* Standardize text data by removing extra spaces and converting to lowercase
* Check for and handle outliers in numerical columns
"""
# Prepare the dataset summary
summary = {
"shape": df.shape,
"columns": df.columns.tolist(),
"dtypes": df.dtypes.astype(str).to_dict(),
"missing_values": df.isnull().sum().to_dict(),
"duplicates": df.duplicated().sum(),
"sample_data": df.head(5).to_dict()
}
# Create the prompt for OpenAI
prompt = f"""
I have a dataset with the following properties:
- Shape: {summary['shape']}
- Columns: {', '.join(summary['columns'])}
- Missing values: {summary['missing_values']}
- Duplicate rows: {summary['duplicates']}
Here's a sample of the data:
{json.dumps(summary['sample_data'], indent=2)}
Based on this information, provide specific data cleaning recommendations in a bulleted list.
Include suggestions for handling missing values, outliers, data types, and duplicate rows.
Format your response as markdown and ONLY include the cleaning recommendations.
"""
# Use the OpenAI API key
openai.api_key = OPENAI_API_KEY
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a data science assistant focused on data cleaning recommendations."},
{"role": "user", "content": prompt}
],
max_tokens=700
)
return response.choices[0].message.content
except Exception as e:
# Fallback to Hugging Face model if OpenAI call fails
global data_assistant
if data_assistant is None:
data_assistant = initialize_ai_models()
if data_assistant:
# Shorten the prompt for the smaller model
short_prompt = f"Data cleaning recommendations for dataset with {df.shape[0]} rows, {df.shape[1]} columns, and columns: {', '.join(df.columns[:5])}..."
try:
# Generate recommendations
recommendations = data_assistant(
short_prompt,
max_length=500,
num_return_sequences=1
)[0]['generated_text']
return f"""
## Data Cleaning Recommendations
* Handle missing values in columns with appropriate imputation techniques
* Check for and remove duplicate records
* Standardize text fields and correct spelling errors
* Convert columns to appropriate data types
* Check for and handle outliers in numerical columns
Note: Using basic AI model as OpenAI API encountered an error: {str(e)}
"""
except:
pass
return f"""
## Data Cleaning Recommendations
* Handle missing values by either removing rows or imputing with mean/median/mode
* Remove duplicate rows if present
* Convert date-like string columns to proper datetime format
* Standardize text data by removing extra spaces and converting to lowercase
* Check for and handle outliers in numerical columns
Note: Could not access AI models for customized recommendations. Error: {str(e)}
"""
def get_hf_model_insights(df):
"""Get dataset insights using Hugging Face model."""
try:
global data_assistant, HF_API_TOKEN
# Check if HF token is set
if not HF_API_TOKEN and not data_assistant:
return """
## Hugging Face API Token Not Configured
Please set your Hugging Face API token in the Settings tab to get AI-powered data analysis insights.
Without an API token, here are some general analysis suggestions:
1. Examine the distribution of each numeric column
2. Analyze correlations between numeric features
3. Look for patterns in categorical data
4. Consider creating visualizations like histograms and scatter plots
5. Explore relationships between different variables
"""
# Initialize the model if not already done
if data_assistant is None:
data_assistant = initialize_ai_models()
if not data_assistant:
return """
## AI Model Not Available
Could not initialize the Hugging Face model. Please check your API token or try again later.
Here are some general analysis suggestions:
1. Examine the distribution of each numeric column
2. Analyze correlations between numeric features
3. Look for patterns in categorical data
4. Consider creating pivot tables to understand relationships
5. Look for time-based patterns if datetime columns are present
"""
# Prepare a brief summary of the dataset
numeric_cols = df.select_dtypes(include=[np.number]).columns.tolist()
categorical_cols = df.select_dtypes(include=['object', 'category']).columns.tolist()
dataset_summary = f"""
Dataset with {df.shape[0]} rows and {df.shape[1]} columns.
Numeric columns: {', '.join(numeric_cols[:5])}
Categorical columns: {', '.join(categorical_cols[:5])}
"""
# Generate analysis insights
prompt = f"Based on this dataset summary, suggest data analysis approaches: {dataset_summary}"
response = data_assistant(
prompt,
max_length=300,
num_return_sequences=1
)[0]['generated_text']
# Clean up the response
analysis_insights = response.replace(prompt, "").strip()
if not analysis_insights or len(analysis_insights) < 50:
# Fallback if the model doesn't produce good results
analysis_insights = """
## Data Analysis Suggestions
1. For numeric columns, calculate correlation matrices to identify relationships
2. For categorical columns, analyze frequency distributions
3. Consider creating pivot tables to understand how categories relate
4. Look for time-based patterns if datetime columns are present
5. Consider dimensionality reduction techniques like PCA for visualization
"""
return analysis_insights
except Exception as e:
return f"""
## Data Analysis Suggestions
1. Examine the distribution of each numeric column
2. Analyze correlations between numeric features
3. Look for patterns in categorical data
4. Consider creating visualizations like histograms and scatter plots
5. Explore relationships between different variables
Note: Could not access AI models for customized recommendations. Error: {str(e)}
"""
def process_file(file):
"""Main function to process uploaded file and generate analysis."""
# Read the file
df = read_file(file)
if isinstance(df, str): # Error message
return df, None, None, None
# Convert date columns to datetime
for col in df.columns:
if df[col].dtype == 'object':
try:
if pd.to_datetime(df[col], errors='coerce').notna().all():
df[col] = pd.to_datetime(df[col])
except:
pass
# Analyze data
analysis = analyze_data(df)
# Generate visualizations
visualizations = generate_visualizations(df)
# Get AI cleaning recommendations
cleaning_recommendations = get_ai_cleaning_recommendations(df)
# Get insights from Hugging Face model
analysis_insights = get_hf_model_insights(df)
return analysis, visualizations, cleaning_recommendations, analysis_insights
def display_analysis(analysis):
"""Format the analysis results for display."""
if analysis is None:
return "No analysis available."
if isinstance(analysis, str): # Error message
return analysis
# Format analysis as HTML
html = "<h2>Data Analysis</h2>"
# Basic info
html += f"<p><strong>Shape:</strong> {analysis['Shape'][0]} rows, {analysis['Shape'][1]} columns</p>"
html += f"<p><strong>Columns:</strong> {', '.join(analysis['Columns'])}</p>"
# Missing values
html += "<h3>Missing Values</h3>"
if isinstance(analysis['Missing Values'], str):
html += f"<p>{analysis['Missing Values']}</p>"
else:
html += "<ul>"
for col, count in analysis['Missing Values'].items():
html += f"<li>{col}: {count}</li>"
html += "</ul>"
# Data quality issues
if 'Data Quality Issues' in analysis and analysis['Data Quality Issues']:
html += "<h3>Data Quality Issues</h3>"
for issue_type, issue_details in analysis['Data Quality Issues'].items():
html += f"<h4>{issue_type}</h4>"
if isinstance(issue_details, dict):
html += "<ul>"
for key, value in issue_details.items():
html += f"<li>{key}: {value}</li>"
html += "</ul>"
else:
html += f"<p>{issue_details}</p>"
# Outliers
if 'Outliers' in analysis and analysis['Outliers']:
html += "<h3>Outliers Detected</h3>"
html += "<ul>"
for col, details in analysis['Outliers'].items():
html += f"<li><strong>{col}:</strong> {details['count']} outliers ({details['percentage']})<br>"
html += f"Values outside range: [{details['lower_bound']:.2f}, {details['upper_bound']:.2f}]</li>"
html += "</ul>"
# Statistics for numeric columns
if 'Statistics' in analysis:
html += "<h3>Numeric Statistics</h3>"
html += analysis['Statistics']
# Categorical columns info
if 'Category Counts' in analysis:
html += "<h3>Categorical Data (Top Values)</h3>"
for col, counts in analysis['Category Counts'].items():
html += f"<h4>{col}</h4><ul>"
for val, count in counts.items():
html += f"<li>{val}: {count}</li>"
html += "</ul>"
return html
def apply_data_cleaning(df, cleaning_options):
"""Apply selected data cleaning operations to the DataFrame."""
cleaned_df = df.copy()
cleaning_log = []
# Handle missing values
if cleaning_options.get("handle_missing"):
method = cleaning_options.get("missing_method", "drop")
for col in cleaned_df.columns:
missing_count_before = cleaned_df[col].isnull().sum()
if missing_count_before > 0:
if method == "drop":
# Drop rows with missing values in this column
cleaned_df = cleaned_df.dropna(subset=[col])
cleaning_log.append(f"Dropped {missing_count_before} rows with missing values in column '{col}'")
elif method == "mean" and cleaned_df[col].dtype in [np.float64, np.int64]:
# Fill with mean for numeric columns
mean_val = cleaned_df[col].mean()
cleaned_df[col] = cleaned_df[col].fillna(mean_val)
cleaning_log.append(f"Filled {missing_count_before} missing values in column '{col}' with mean ({mean_val:.2f})")
elif method == "median" and cleaned_df[col].dtype in [np.float64, np.int64]:
# Fill with median for numeric columns
median_val = cleaned_df[col].median()
cleaned_df[col] = cleaned_df[col].fillna(median_val)
cleaning_log.append(f"Filled {missing_count_before} missing values in column '{col}' with median ({median_val:.2f})")
elif method == "mode":
# Fill with mode for any column type
mode_val = cleaned_df[col].mode()[0]
cleaned_df[col] = cleaned_df[col].fillna(mode_val)
cleaning_log.append(f"Filled {missing_count_before} missing values in column '{col}' with mode ({mode_val})")
elif method == "zero" and cleaned_df[col].dtype in [np.float64, np.int64]:
# Fill with zeros for numeric columns
cleaned_df[col] = cleaned_df[col].fillna(0)
cleaning_log.append(f"Filled {missing_count_before} missing values in column '{col}' with 0")
# Remove duplicates
if cleaning_options.get("remove_duplicates"):
dupe_count_before = cleaned_df.duplicated().sum()
if dupe_count_before > 0:
cleaned_df = cleaned_df.drop_duplicates()
cleaning_log.append(f"Removed {dupe_count_before} duplicate rows")
# Handle outliers in numeric columns
if cleaning_options.get("handle_outliers"):
method = cleaning_options.get("outlier_method", "remove")
numeric_cols = cleaned_df.select_dtypes(include=[np.number]).columns
for col in numeric_cols:
# Calculate IQR
Q1 = cleaned_df[col].quantile(0.25)
Q3 = cleaned_df[col].quantile(0.75)
IQR = Q3 - Q1
# Define outlier bounds
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
# Identify outliers
outliers = ((cleaned_df[col] < lower_bound) | (cleaned_df[col] > upper_bound))
outlier_count = outliers.sum()
if outlier_count > 0:
if method == "remove":
# Remove rows with outliers
cleaned_df = cleaned_df[~outliers]
cleaning_log.append(f"Removed {outlier_count} rows with outliers in column '{col}'")
elif method == "cap":
# Cap outliers at the bounds
cleaned_df.loc[cleaned_df[col] < lower_bound, col] = lower_bound
cleaned_df.loc[cleaned_df[col] > upper_bound, col] = upper_bound
cleaning_log.append(f"Capped {outlier_count} outliers in column '{col}' to range [{lower_bound:.2f}, {upper_bound:.2f}]")
# Convert date columns
if cleaning_options.get("convert_dates"):
for col in cleaned_df.columns:
if col in cleaning_options.get("date_columns", []):
try:
cleaned_df[col] = pd.to_datetime(cleaned_df[col])
cleaning_log.append(f"Converted column '{col}' to datetime format")
except:
cleaning_log.append(f"Failed to convert column '{col}' to datetime format")
# Normalize numeric columns
if cleaning_options.get("normalize_columns"):
for col in cleaned_df.columns:
if col in cleaning_options.get("normalize_columns_list", []) and cleaned_df[col].dtype in [np.float64, np.int64]:
# Min-max normalization
min_val = cleaned_df[col].min()
max_val = cleaned_df[col].max()
if max_val > min_val: # Avoid division by zero
cleaned_df[col] = (cleaned_df[col] - min_val) / (max_val - min_val)
cleaning_log.append(f"Normalized column '{col}' to range [0, 1]")
return cleaned_df, cleaning_log
def apply_cleaning_ui(file, handle_missing, missing_method, remove_duplicates,
handle_outliers, outlier_method, convert_dates, date_columns,
normalize_numeric):
"""UI function for data cleaning workflow."""
if file is None:
return "Please upload a file before attempting to clean data.", None
# Read the file
df = read_file(file)
if isinstance(df, str): # Error message
return df, None
# Configure cleaning options
cleaning_options = {
"handle_missing": handle_missing,
"missing_method": missing_method,
"remove_duplicates": remove_duplicates,
"handle_outliers": handle_outliers,
"outlier_method": outlier_method,
"convert_dates": convert_dates,
"date_columns": date_columns.split(",") if date_columns else [],
"normalize_columns": normalize_numeric,
"normalize_columns_list": df.select_dtypes(include=[np.number]).columns.tolist() if normalize_numeric else []
}
# Apply cleaning
cleaned_df, cleaning_log = apply_data_cleaning(df, cleaning_options)
# Generate info about the cleaning
result_summary = f"""
<h2>Data Cleaning Results</h2>
<p>Original data: {df.shape[0]} rows, {df.shape[1]} columns</p>
<p>Cleaned data: {cleaned_df.shape[0]} rows, {cleaned_df.shape[1]} columns</p>
<h3>Cleaning Operations Applied:</h3>
<ul>
"""
for log_item in cleaning_log:
result_summary += f"<li>{log_item}</li>"
result_summary += "</ul>"
# Save cleaned data for download
buffer = io.BytesIO()
cleaned_df.to_csv(buffer, index=False)
buffer.seek(0)
return result_summary, buffer
def app_ui(file):
"""Main function for the Gradio interface."""
if file is None:
return "Please upload a file to begin analysis.", None, None, None
print(f"Processing file in app_ui: {file.name if hasattr(file, 'name') else 'unknown'}")
# Process the file
analysis, visualizations, cleaning_recommendations, analysis_insights = process_file(file)
if isinstance(analysis, str): # Error message
print(f"Error in analysis: {analysis}")
return analysis, None, None, None
# Format analysis for display
analysis_html = display_analysis(analysis)
# Prepare visualizations for display
viz_html = ""
if visualizations and not isinstance(visualizations, str):
print(f"Processing {len(visualizations)} visualizations for display")
for viz_name, fig in visualizations.items():
try:
# For debugging, print visualization object info
print(f"Visualization {viz_name}: type={type(fig)}")
# Convert plotly figure to HTML
html_content = fig.to_html(full_html=False, include_plotlyjs="cdn")
print(f"Generated HTML for {viz_name}, length: {len(html_content)}")
viz_html += f'<div style="margin-bottom: 30px;">{html_content}</div>'
print(f"Added visualization: {viz_name}")
except Exception as e:
print(f"Error rendering visualization {viz_name}: {e}")
else:
print(f"No visualizations to display: {visualizations}")
viz_html = "<p>No visualizations could be generated for this dataset.</p>"
# Combine analysis and visualizations
result_html = f"""
<div style="display: flex; flex-direction: column;">
<div>{analysis_html}</div>
<h2>Data Visualizations</h2>
<div>{viz_html}</div>
</div>
"""
return result_html, visualizations, cleaning_recommendations, analysis_insights
def test_visualization():
"""Create a simple test visualization to verify plotly is working."""
import plotly.express as px
import numpy as np
# Create sample data
x = np.random.rand(100)
y = np.random.rand(100)
# Create a simple scatter plot
fig = px.scatter(x=x, y=y, title="Test Plot")
# Convert to HTML
html = fig.to_html(full_html=False, include_plotlyjs="cdn")
return html
# Create Gradio interface
with gr.Blocks(title="Data Visualization & Cleaning AI") as demo:
gr.Markdown("# Data Visualization & Cleaning AI")
gr.Markdown("Upload your data file (CSV, Excel, JSON, or TXT) and get automatic analysis, visualizations, and AI-powered insights.")
with gr.Tabs() as tabs:
with gr.TabItem("Data Analysis"):
with gr.Row():
file_input = gr.File(label="Upload Data File")
analyze_button = gr.Button("Analyze Data")
# Add test visualization to verify Plotly is working
test_viz_html = test_visualization()
gr.HTML(f"<details><summary>Plotly Test (Click to expand)</summary>{test_viz_html}</details>", visible=True)
with gr.Tabs():
with gr.TabItem("Analysis & Visualizations"):
output = gr.HTML(label="Results")
with gr.TabItem("AI Cleaning Recommendations"):
cleaning_recommendations_output = gr.Markdown(label="AI Recommendations")
with gr.TabItem("AI Analysis Insights"):
analysis_insights_output = gr.Markdown(label="Analysis Insights")
with gr.TabItem("Raw Visualization Objects"):
viz_output = gr.JSON(label="Visualization Objects")
with gr.TabItem("Data Cleaning"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Cleaning Options")
handle_missing = gr.Checkbox(label="Handle Missing Values", value=True)
missing_method = gr.Radio(
label="Missing Values Method",
choices=["drop", "mean", "median", "mode", "zero"],
value="mean"
)
remove_duplicates = gr.Checkbox(label="Remove Duplicate Rows", value=True)
handle_outliers = gr.Checkbox(label="Handle Outliers", value=False)
outlier_method = gr.Radio(
label="Outlier Method",
choices=["remove", "cap"],
value="cap"
)
convert_dates = gr.Checkbox(label="Convert Date Columns", value=False)
date_columns = gr.Textbox(
label="Date Columns (comma-separated)",
placeholder="e.g., date,created_at,timestamp"
)
normalize_numeric = gr.Checkbox(label="Normalize Numeric Columns", value=False)
with gr.Column(scale=2):
clean_button = gr.Button("Clean Data")
cleaning_output = gr.HTML(label="Cleaning Results")
cleaned_file_output = gr.File(label="Download Cleaned Data")
with gr.TabItem("Settings"):
gr.Markdown("### API Key Configuration")
gr.Markdown("Enter your API keys to enable AI-powered features.")
with gr.Group():
gr.Markdown("#### OpenAI API Key")
gr.Markdown("Required for advanced data cleaning recommendations.")
openai_key_input = gr.Textbox(
label="OpenAI API Key",
placeholder="sk-...",
type="password"
)
openai_key_button = gr.Button("Save OpenAI API Key")
openai_key_status = gr.Markdown("Status: Not configured")
with gr.Group():
gr.Markdown("#### Hugging Face API Token")
gr.Markdown("Required for AI-powered data analysis insights.")
hf_token_input = gr.Textbox(
label="Hugging Face API Token",
placeholder="hf_...",
type="password"
)
hf_token_button = gr.Button("Save Hugging Face Token")
hf_token_status = gr.Markdown("Status: Not configured")
# Connect the buttons to functions
analyze_button.click(
fn=app_ui,
inputs=[file_input],
outputs=[output, viz_output, cleaning_recommendations_output, analysis_insights_output]
)
clean_button.click(
fn=apply_cleaning_ui,
inputs=[
file_input, handle_missing, missing_method, remove_duplicates,
handle_outliers, outlier_method, convert_dates, date_columns,
normalize_numeric
],
outputs=[cleaning_output, cleaned_file_output]
)
openai_key_button.click(
fn=set_openai_key,
inputs=[openai_key_input],
outputs=[openai_key_status]
)
hf_token_button.click(
fn=set_hf_token,
inputs=[hf_token_input],
outputs=[hf_token_status]
)
# Initialize AI models
try:
data_assistant = initialize_ai_models()
except Exception as e:
print(f"Error initializing AI models: {e}")
data_assistant = None
# Launch the app
if __name__ == "__main__":
demo.launch()