Spaces:
Runtime error
Runtime error
INDIC_NLP_LIB_HOME = "indic_nlp_library" | |
INDIC_NLP_RESOURCES = "indic_nlp_resources" | |
import sys | |
sys.path.append(r"{}".format(INDIC_NLP_LIB_HOME)) | |
from indicnlp import common | |
common.set_resources_path(INDIC_NLP_RESOURCES) | |
from indicnlp import loader | |
loader.load() | |
from sacremoses import MosesPunctNormalizer | |
from sacremoses import MosesTokenizer | |
from sacremoses import MosesDetokenizer | |
from collections import defaultdict | |
from tqdm import tqdm | |
from joblib import Parallel, delayed | |
from indicnlp.tokenize import indic_tokenize | |
from indicnlp.tokenize import indic_detokenize | |
from indicnlp.normalize import indic_normalize | |
from indicnlp.transliterate import unicode_transliterate | |
en_tok = MosesTokenizer(lang="en") | |
en_normalizer = MosesPunctNormalizer() | |
def preprocess_line(line, normalizer, lang, transliterate=False): | |
if lang == "en": | |
return " ".join( | |
en_tok.tokenize(en_normalizer.normalize(line.strip()), escape=False) | |
) | |
elif transliterate: | |
# line = indic_detokenize.trivial_detokenize(line.strip(), lang) | |
return unicode_transliterate.UnicodeIndicTransliterator.transliterate( | |
" ".join( | |
indic_tokenize.trivial_tokenize( | |
normalizer.normalize(line.strip()), lang | |
) | |
), | |
lang, | |
"hi", | |
).replace(" ् ", "्") | |
else: | |
# we only need to transliterate for joint training | |
return " ".join( | |
indic_tokenize.trivial_tokenize(normalizer.normalize(line.strip()), lang) | |
) | |
def preprocess(infname, outfname, lang, transliterate=False): | |
""" | |
Normalize, tokenize and script convert(for Indic) | |
return number of sentences input file | |
""" | |
n = 0 | |
num_lines = sum(1 for line in open(infname, "r")) | |
if lang == "en": | |
with open(infname, "r", encoding="utf-8") as infile, open( | |
outfname, "w", encoding="utf-8" | |
) as outfile: | |
out_lines = Parallel(n_jobs=-1, backend="multiprocessing")( | |
delayed(preprocess_line)(line, None, lang) | |
for line in tqdm(infile, total=num_lines) | |
) | |
for line in out_lines: | |
outfile.write(line + "\n") | |
n += 1 | |
else: | |
normfactory = indic_normalize.IndicNormalizerFactory() | |
normalizer = normfactory.get_normalizer(lang) | |
# reading | |
with open(infname, "r", encoding="utf-8") as infile, open( | |
outfname, "w", encoding="utf-8" | |
) as outfile: | |
out_lines = Parallel(n_jobs=-1, backend="multiprocessing")( | |
delayed(preprocess_line)(line, normalizer, lang, transliterate) | |
for line in tqdm(infile, total=num_lines) | |
) | |
for line in out_lines: | |
outfile.write(line + "\n") | |
n += 1 | |
return n | |
def old_preprocess(infname, outfname, lang): | |
""" | |
Preparing each corpus file: | |
- Normalization | |
- Tokenization | |
- Script coversion to Devanagari for Indic scripts | |
""" | |
n = 0 | |
num_lines = sum(1 for line in open(infname, "r")) | |
# reading | |
with open(infname, "r", encoding="utf-8") as infile, open( | |
outfname, "w", encoding="utf-8" | |
) as outfile: | |
if lang == "en": | |
en_tok = MosesTokenizer(lang="en") | |
en_normalizer = MosesPunctNormalizer() | |
for line in tqdm(infile, total=num_lines): | |
outline = " ".join( | |
en_tok.tokenize(en_normalizer.normalize(line.strip()), escape=False) | |
) | |
outfile.write(outline + "\n") | |
n += 1 | |
else: | |
normfactory = indic_normalize.IndicNormalizerFactory() | |
normalizer = normfactory.get_normalizer(lang) | |
for line in tqdm(infile, total=num_lines): | |
outline = ( | |
unicode_transliterate.UnicodeIndicTransliterator.transliterate( | |
" ".join( | |
indic_tokenize.trivial_tokenize( | |
normalizer.normalize(line.strip()), lang | |
) | |
), | |
lang, | |
"hi", | |
).replace(" ् ", "्") | |
) | |
outfile.write(outline + "\n") | |
n += 1 | |
return n | |
if __name__ == "__main__": | |
# INDIC_NLP_LIB_HOME = "indic_nlp_library" | |
# INDIC_NLP_RESOURCES = "indic_nlp_resources" | |
# sys.path.append(r'{}'.format(INDIC_NLP_LIB_HOME)) | |
# common.set_resources_path(INDIC_NLP_RESOURCES) | |
# data_dir = '../joint_training/v1' | |
# new_dir = data_dir + '.norm' | |
# for path, subdirs, files in os.walk(data_dir): | |
# for name in files: | |
# infile = os.path.join(path, name) | |
# lang = infile.split('.')[-1] | |
# outfile = os.path.join(path.replace(data_dir, new_dir), name) | |
# preprocess(infile, outfile, lang) | |
# loader.load() | |
infname = sys.argv[1] | |
outfname = sys.argv[2] | |
lang = sys.argv[3] | |
if len(sys.argv) == 4: | |
transliterate = False | |
elif len(sys.argv) == 5: | |
transliterate = sys.argv[4] | |
if transliterate.lower() == "true": | |
transliterate = True | |
else: | |
transliterate = False | |
else: | |
print(f"Invalid arguments: {sys.argv}") | |
exit() | |
print(preprocess(infname, outfname, lang, transliterate)) | |