Spaces:
Runtime error
Runtime error
pred_fname=$1 | |
ref_fname=$2 | |
src_lang=$3 | |
tgt_lang=$4 | |
# we compute and report tokenized bleu scores. | |
# For computing BLEU scores, systems should output detokenized outputs. Your MT system might be doing it out of the box if you are using SentencePiece - nothing to do in that case. | |
# If you are using BPE then: | |
# 1. For English, you can use MosesDetokenizer (either the scripts in moses or the sacremoses python package) | |
# 2. For Indian languages, you can use the IndicNLP library detokenizer (note: please don't skip this step, since detok/tokenizer are not guaranteed to be reversible**. | |
# ^ both 1. and 2. are scripts/postprocess_translate.py | |
# For computing BLEU, we use sacrebleu: | |
# For English output: sacrebleu reffile < outputfile. This internally tokenizes using mteval-v13a | |
# For Indian language output, we need tokenized output and reference since we don't know how well the sacrebleu tokenizer works for Indic input. | |
# Hence we tokenize both preds and target files with IndicNLP tokenizer and then run: sacrebleu --tokenize none reffile < outputfile | |
if [ $tgt_lang == 'en' ]; then | |
# indic to en models | |
sacrebleu $ref_fname < $pred_fname | |
else | |
# indicnlp tokenize predictions and reference files before evaluation | |
input_size=`python scripts/preprocess_translate.py $ref_fname $ref_fname.tok $tgt_lang` | |
input_size=`python scripts/preprocess_translate.py $pred_fname $pred_fname.tok $tgt_lang` | |
# since we are tokenizing with indicnlp separately, we are setting tokenize to none here | |
sacrebleu --tokenize none $ref_fname.tok < $pred_fname.tok | |
fi |