Spaces:
Runtime error
Runtime error
import soundfile as sf | |
import torch | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer | |
import gradio as gr | |
import sox | |
def convert(inputfile, outfile): | |
sox_tfm = sox.Transformer() | |
sox_tfm.set_output_format( | |
file_type="wav", channels=1, encoding="signed-integer", rate=16000, bits=16 | |
) | |
sox_tfm.build(inputfile, outfile) | |
model_translate = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M") | |
tokenizer_translate = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M") | |
inlang='hi' | |
outlang='en' | |
tokenizer_translate.src_lang = inlang | |
def translate(text): | |
encoded_hi = tokenizer_translate(text, return_tensors="pt") | |
generated_tokens = model_translate.generate(**encoded_hi, forced_bos_token_id=tokenizer_translate.get_lang_id(outlang)) | |
return tokenizer_translate.batch_decode(generated_tokens, skip_special_tokens=True)[0] | |
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-hindi-him-4200") | |
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-hindi-him-4200") | |
def parse_transcription(wav_file): | |
filename = wav_file.name.split('.')[0] | |
convert(wav_file.name, filename + "16k.wav") | |
speech, _ = sf.read(filename + "16k.wav") | |
input_values = processor(speech, sampling_rate=16_000, return_tensors="pt").input_values | |
logits = model(input_values).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) | |
return transcription, translate(transcription) | |
output1 = gr.outputs.Textbox(label="Hindi Output from ASR") | |
output2 = gr.outputs.Textbox(label="English Translated Output") | |
input_ = gr.inputs.Audio(source="microphone", type="file") | |
#gr.Interface(parse_transcription, inputs = input_, outputs="text", | |
# analytics_enabled=False, show_tips=False, enable_queue=True).launch(inline=False); | |
gr.Interface(parse_transcription, inputs = input_, outputs=[output1, output2], analytics_enabled=False, | |
show_tips=False, | |
theme='huggingface', | |
layout='vertical', | |
title="Vakyansh: Speech To text for Indic Languages", | |
description="This is a live demo for Speech to Text Translation. Models used: vakyansh wav2vec2 hindi + m2m100", enable_queue=True).launch( inline=False) |