DocumentImageClassifier / preprocess.py
Harsimran19's picture
Upload 4 files
4331eba
raw
history blame
3.25 kB
import pytesseract
from PIL import Image
import numpy as np
from transformers import LayoutLMTokenizer
pytesseract.pytesseract.tesseract_cmd = r"C:\\Program Files\\Tesseract-OCR\\tesseract.exe"
tokenizer = LayoutLMTokenizer.from_pretrained("microsoft/layoutlm-base-uncased")
def normalize_box(box, width, height):
return [
int(1000 * (box[0] / width)),
int(1000 * (box[1] / height)),
int(1000 * (box[2] / width)),
int(1000 * (box[3] / height)),
]
def apply_ocr(image):
# get the image
# image = Image.open(example['image_path'])
width, height = image.size
example={}
# apply ocr to the image
ocr_df = pytesseract.image_to_data(image, output_type='data.frame')
float_cols = ocr_df.select_dtypes('float').columns
ocr_df = ocr_df.dropna().reset_index(drop=True)
ocr_df[float_cols] = ocr_df[float_cols].round(0).astype(int)
ocr_df = ocr_df.replace(r'^\s*$', np.nan, regex=True)
ocr_df = ocr_df.dropna().reset_index(drop=True)
# get the words and actual (unnormalized) bounding boxes
#words = [word for word in ocr_df.text if str(word) != 'nan'])
words = list(ocr_df.text)
words = [str(w) for w in words]
coordinates = ocr_df[['left', 'top', 'width', 'height']]
actual_boxes = []
for idx, row in coordinates.iterrows():
x, y, w, h = tuple(row) # the row comes in (left, top, width, height) format
actual_box = [x, y, x+w, y+h] # we turn it into (left, top, left+width, top+height) to get the actual box
actual_boxes.append(actual_box)
# normalize the bounding boxes
boxes = []
for box in actual_boxes:
boxes.append(normalize_box(box, width, height))
# add as extra columns
assert len(words) == len(boxes)
example['words'] = words
example['bbox'] = boxes
return example
def encode_example(example, max_seq_length=512, pad_token_box=[0, 0, 0, 0]):
words = example['words']
normalized_word_boxes = example['bbox']
assert len(words) == len(normalized_word_boxes)
token_boxes = []
for word, box in zip(words, normalized_word_boxes):
word_tokens = tokenizer.tokenize(word)
token_boxes.extend([box] * len(word_tokens))
# Truncation of token_boxes
special_tokens_count = 2
if len(token_boxes) > max_seq_length - special_tokens_count:
token_boxes = token_boxes[: (max_seq_length - special_tokens_count)]
# add bounding boxes of cls + sep tokens
token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]]
encoding = tokenizer(' '.join(words), padding='max_length', truncation=True)
# Padding of token_boxes up the bounding boxes to the sequence length.
input_ids = tokenizer(' '.join(words), truncation=True)["input_ids"]
padding_length = max_seq_length - len(input_ids)
token_boxes += [pad_token_box] * padding_length
encoding['bbox'] = token_boxes
assert len(encoding['input_ids']) == max_seq_length
assert len(encoding['attention_mask']) == max_seq_length
assert len(encoding['token_type_ids']) == max_seq_length
assert len(encoding['bbox']) == max_seq_length
return encoding