HarshitJoshi commited on
Commit
11e0e08
·
1 Parent(s): b0c9389

SmokeDetectIndianVehicles

Browse files
Files changed (3) hide show
  1. .gitignore +7 -0
  2. app.py +106 -0
  3. requirements.txt +47 -0
.gitignore ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ flagged/
2
+ *.pt
3
+ *.png
4
+ *.jpg
5
+ *.mp4
6
+ *.mkv
7
+ gradio_cached_examples/
app.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import cv2
3
+ import requests
4
+ import os
5
+
6
+ from ultralytics import YOLO
7
+
8
+ file_urls = [
9
+ # 'https://www.dropbox.com/s/b5g97xo901zb3ds/pothole_example.jpg?dl=1',
10
+ # 'https://www.dropbox.com/s/86uxlxxlm1iaexa/pothole_screenshot.png?dl=1',
11
+ # 'https://www.dropbox.com/s/7sjfwncffg8xej2/video_7.mp4?dl=1'
12
+ ]
13
+
14
+ def download_file(url, save_name):
15
+ url = url
16
+ if not os.path.exists(save_name):
17
+ file = requests.get(url)
18
+ open(save_name, 'wb').write(file.content)
19
+
20
+ for i, url in enumerate(file_urls):
21
+ if 'mp4' in file_urls[i]:
22
+ download_file(
23
+ file_urls[i],
24
+ f"video.mp4"
25
+ )
26
+ else:
27
+ download_file(
28
+ file_urls[i],
29
+ f"image_{i}.jpg"
30
+ )
31
+
32
+ model = YOLO('modelbest.pt')
33
+ path = [['image_0.jpg'], ['image_1.jpg']]
34
+ video_path = [['video.mp4']]
35
+
36
+ def show_preds_image(image_path):
37
+ image = cv2.imread(image_path)
38
+ outputs = model.predict(source=image_path)
39
+ results = outputs[0].cpu().numpy()
40
+ for i, det in enumerate(results.boxes.xyxy):
41
+ cv2.rectangle(
42
+ image,
43
+ (int(det[0]), int(det[1])),
44
+ (int(det[2]), int(det[3])),
45
+ color=(0, 0, 255),
46
+ thickness=2,
47
+ lineType=cv2.LINE_AA
48
+ )
49
+ return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
50
+
51
+ inputs_image = [
52
+ gr.components.Image(type="filepath", label="Input Image"),
53
+ ]
54
+ outputs_image = [
55
+ gr.components.Image(type="numpy", label="Output Image"),
56
+ ]
57
+
58
+ interface_image = gr.Interface(
59
+ fn=show_preds_image,
60
+ inputs=inputs_image,
61
+ outputs=outputs_image,
62
+ title="Pothole detector",
63
+ examples=path,
64
+ cache_examples=False,
65
+ )
66
+
67
+
68
+ def show_preds_video(video_path):
69
+ cap = cv2.VideoCapture(video_path)
70
+ while(cap.isOpened()):
71
+ ret, frame = cap.read()
72
+ if ret:
73
+ frame_copy = frame.copy()
74
+ outputs = model.predict(source=frame)
75
+ results = outputs[0].cpu().numpy()
76
+ for i, det in enumerate(results.boxes.xyxy):
77
+ cv2.rectangle(
78
+ frame_copy,
79
+ (int(det[0]), int(det[1])),
80
+ (int(det[2]), int(det[3])),
81
+ color=(0, 0, 255),
82
+ thickness=2,
83
+ lineType=cv2.LINE_AA
84
+ )
85
+ yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
86
+
87
+ inputs_video = [
88
+ gr.components.Video(type="filepath", label="Input Video"),
89
+
90
+ ]
91
+ outputs_video = [
92
+ gr.components.Image(type="numpy", label="Output Image"),
93
+ ]
94
+ interface_video = gr.Interface(
95
+ fn=show_preds_video,
96
+ inputs=inputs_video,
97
+ outputs=outputs_video,
98
+ title="Pothole detector",
99
+ examples=video_path,
100
+ cache_examples=False,
101
+ )
102
+
103
+ gr.TabbedInterface(
104
+ [interface_image, interface_video],
105
+ tab_names=['Image inference', 'Video inference']
106
+ ).queue().launch()
requirements.txt ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics requirements
2
+ # Usage: pip install -r requirements.txt
3
+
4
+ # Base ----------------------------------------
5
+ hydra-core>=1.2.0
6
+ matplotlib>=3.2.2
7
+ numpy>=1.18.5
8
+ opencv-python>=4.1.1
9
+ Pillow>=7.1.2
10
+ PyYAML>=5.3.1
11
+ requests>=2.23.0
12
+ scipy>=1.4.1
13
+ torch>=1.7.0
14
+ torchvision>=0.8.1
15
+ tqdm>=4.64.0
16
+ ultralytics
17
+
18
+ # Logging -------------------------------------
19
+ tensorboard>=2.4.1
20
+ # clearml
21
+ # comet
22
+
23
+ # Plotting ------------------------------------
24
+ pandas>=1.1.4
25
+ seaborn>=0.11.0
26
+
27
+ # Export --------------------------------------
28
+ # coremltools>=6.0 # CoreML export
29
+ # onnx>=1.12.0 # ONNX export
30
+ # onnx-simplifier>=0.4.1 # ONNX simplifier
31
+ # nvidia-pyindex # TensorRT export
32
+ # nvidia-tensorrt # TensorRT export
33
+ # scikit-learn==0.19.2 # CoreML quantization
34
+ # tensorflow>=2.4.1 # TF exports (-cpu, -aarch64, -macos)
35
+ # tensorflowjs>=3.9.0 # TF.js export
36
+ # openvino-dev # OpenVINO export
37
+
38
+ # Extras --------------------------------------
39
+ ipython # interactive notebook
40
+ psutil # system utilization
41
+ thop>=0.1.1 # FLOPs computation
42
+ # albumentations>=1.0.3
43
+ # pycocotools>=2.0.6 # COCO mAP
44
+ # roboflow
45
+
46
+ # HUB -----------------------------------------
47
+ GitPython>=3.1.24