Spaces:
Runtime error
Runtime error
Project Files committed
Browse files- LICENSE_plate_detection_YOLOv8_model_training.py.ipynb +0 -0
- License_Plate_detection_Model_Evaluation.ipynb +0 -0
- Project README.md +17 -0
- YOLOv8 Training Results.zip +3 -0
- YOLOv8_best_weights.pt +3 -0
- app.py +34 -0
- predict_pipeline.py +46 -0
- requirements.txt +3 -0
LICENSE_plate_detection_YOLOv8_model_training.py.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
License_Plate_detection_Model_Evaluation.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Project README.md
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Vehicle LICENSE Plate Detection
|
2 |
+
|
3 |
+
Detects the LICENSE Plates for variety of different Vehicles.
|
4 |
+
|
5 |
+
It has been trained using the YOLOv8 model from **ultraytics** for 15 epochs on NVIDIA T4 GPU
|
6 |
+
|
7 |
+
**Roboflow Dataset used: https://universe.roboflow.com/roboflow-universe-projects/license-plate-recognition-rxg4e**
|
8 |
+
|
9 |
+
**App: https://huggingface.co/spaces/Harsh72AI/Vehicle-License-Plate-Detection**
|
10 |
+
|
11 |
+
YOLOv8 model has achieved:
|
12 |
+
* Box Loss - 0.432
|
13 |
+
* mAP50 - 0.977
|
14 |
+
* mAP50-95 - 0.682
|
15 |
+
|
16 |
+
|
17 |
+
|
YOLOv8 Training Results.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29bece8ef0a7aedd08a4d699c45f8c5d5e8179c636c7ed1d565407e13a152f58
|
3 |
+
size 103926861
|
YOLOv8_best_weights.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:709142c277aaaffa348f907994ee42f2cd40b85c79701572cad8197762ee593f
|
3 |
+
size 52028609
|
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from predict_pipeline import DetectionPipeline
|
2 |
+
import streamlit as st
|
3 |
+
|
4 |
+
st.title('Automatic Vechile LICENSE Plate detection')
|
5 |
+
st.write('Detects the License plate of a car and predicts the digits present in it! \nPowered by YOLOv8 Medium model')
|
6 |
+
|
7 |
+
st.write('')
|
8 |
+
|
9 |
+
detect_pipeline = DetectionPipeline()
|
10 |
+
|
11 |
+
st.info('License Plate Detector MODEL loaded successfully!')
|
12 |
+
|
13 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
|
14 |
+
|
15 |
+
if uploaded_file is not None:
|
16 |
+
|
17 |
+
with st.container():
|
18 |
+
col1, col2 = st.columns([3, 3])
|
19 |
+
col1.header('Input Image')
|
20 |
+
col1.image(uploaded_file, caption='Uploaded Image', use_column_width=True)
|
21 |
+
|
22 |
+
col1.text('')
|
23 |
+
col1.text('')
|
24 |
+
|
25 |
+
if st.button('Detect!'):
|
26 |
+
preprocessed_img_array = detect_pipeline.preprocess_image(uploaded_file=uploaded_file)
|
27 |
+
detections = detect_pipeline.detectLicensePlates(input_array=preprocessed_img_array)
|
28 |
+
detections_img = detect_pipeline.detections2Image(preprocess_image=preprocessed_img_array, detections=detections)
|
29 |
+
|
30 |
+
col2.header('Detections')
|
31 |
+
col2.image(detections_img, caption='Predictions by model', use_column_width=True)
|
32 |
+
|
33 |
+
|
34 |
+
|
predict_pipeline.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ultralytics import YOLO
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import cv2 as cv
|
5 |
+
|
6 |
+
|
7 |
+
class DetectionPipeline():
|
8 |
+
def __init__(self) -> None:
|
9 |
+
# Initialize and Load in Custom YOLOv8 model training weights
|
10 |
+
self.license_plate_detector = YOLO('YOLOv8_best_weights.pt')
|
11 |
+
|
12 |
+
|
13 |
+
def preprocess_image(self, uploaded_file):
|
14 |
+
"""
|
15 |
+
Takes a File in the format - '.jpg' / '.png' / '.jpeg' then converts it into a Numpy array and returns it
|
16 |
+
|
17 |
+
Args:
|
18 |
+
uploaded_file: File that needs to be converted to Numpy array
|
19 |
+
|
20 |
+
Returns:
|
21 |
+
img_array: Image in the `np.array` format
|
22 |
+
"""
|
23 |
+
|
24 |
+
img = Image.open(uploaded_file).convert('RGB')
|
25 |
+
img_array = np.array(img)
|
26 |
+
|
27 |
+
return img_array
|
28 |
+
|
29 |
+
def detectLicensePlates(self, input_array):
|
30 |
+
detections = self.license_plate_detector(input_array)[0]
|
31 |
+
license_plate_detections = []
|
32 |
+
for license_plate in detections.boxes.data.tolist():
|
33 |
+
x1, y1, x2, y2, score, class_id = license_plate
|
34 |
+
license_plate_detections.append([int(x1), int(y1), int(x2), int(y2), score])
|
35 |
+
|
36 |
+
return license_plate_detections
|
37 |
+
|
38 |
+
def detections2Image(self, preprocess_image: np.array, detections:list):
|
39 |
+
img = np.array(preprocess_image, dtype='uint8')
|
40 |
+
for license_plate_info in detections:
|
41 |
+
x1, y1, x2, y2, score = license_plate_info
|
42 |
+
cv.rectangle(img, pt1=(x1, y1), pt2=(x2, y2), color=(0, 255, 0), thickness=2)
|
43 |
+
img_detections = np.array(img)
|
44 |
+
return img_detections
|
45 |
+
|
46 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
ultralytics
|
2 |
+
torch
|
3 |
+
numpy
|