Commit
Browse files- 0_ποΈ_Homepage.py +26 -0
- EasyChair-Preprint-5228.pdf +0 -0
- Models/bin.pkl +3 -0
- Models/stackexchange_topic_model.pkl +3 -0
- Models/tag_model.h5 +3 -0
- Models/token.pkl +3 -0
- pages/1_π_Topic Model Results.py +41 -0
- pages/2_π€_Models.py +191 -0
- pages/3_π_About.py +28 -0
- requirements.txt +159 -0
0_ποΈ_Homepage.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
st.set_page_config(
|
4 |
+
page_title="Autonomous Text Tagging App",
|
5 |
+
page_icon="π",
|
6 |
+
layout="wide",
|
7 |
+
initial_sidebar_state="expanded",
|
8 |
+
)
|
9 |
+
|
10 |
+
|
11 |
+
# Display the main page of the app with instructions on how to use it
|
12 |
+
def main():
|
13 |
+
st.title("Autonomous Text Tagging App")
|
14 |
+
st.subheader(
|
15 |
+
"This application shows a demo of different supervised and unsupervised approches taken in the field of NLP to give relevant tags to the text."
|
16 |
+
)
|
17 |
+
st.subheader("This is a multi-page app.")
|
18 |
+
st.write("1. You can navigate between pages by clicking on the sidebar.")
|
19 |
+
st.write("2. The Topic Modeling Results page shows the results of BERTopic.")
|
20 |
+
st.write("3. The Model page give a demo of all the models used in this app.")
|
21 |
+
st.write("4. The About page gives information about the creator, code, and data.")
|
22 |
+
st.divider()
|
23 |
+
|
24 |
+
|
25 |
+
if __name__ == "__main__":
|
26 |
+
main()
|
EasyChair-Preprint-5228.pdf
DELETED
Binary file (868 kB)
|
|
Models/bin.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0a4fbec22e1a6e06396e8b1c384d5d541b6c0dfd2cec61a8c9a4f7e1179db0c
|
3 |
+
size 756
|
Models/stackexchange_topic_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81f72e9da968496087c2dbe77cc06e1937789099c7b69380e9cebd5ab0a357f8
|
3 |
+
size 438242069
|
Models/tag_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b304a86faeda3cd1ff63af09e57bec8ba0c98d5bdb30613e7fcb08ee1f57b9c
|
3 |
+
size 77937800
|
Models/token.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72c3d62f1cc157956c2131619934ced13e82052e23fa4efe60f104a6632d2a5c
|
3 |
+
size 1961509
|
pages/1_π_Topic Model Results.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from bertopic import BERTopic
|
3 |
+
|
4 |
+
|
5 |
+
@st.cache_resource
|
6 |
+
def load_model():
|
7 |
+
return BERTopic.load(r"Models/stackexchange_topic_model.pkl")
|
8 |
+
|
9 |
+
|
10 |
+
bertopic_model = load_model()
|
11 |
+
|
12 |
+
|
13 |
+
def topic_model_results():
|
14 |
+
st.title("Topic Model Results")
|
15 |
+
tab1, tab2, tab3, tab4, tab5 = st.tabs(
|
16 |
+
[
|
17 |
+
"Topic Word Score",
|
18 |
+
"Intertopic Distance Map",
|
19 |
+
"Topic Probability Distribution",
|
20 |
+
"Visualize Hierarchical Topics",
|
21 |
+
"Visualize Topics Heatmap",
|
22 |
+
]
|
23 |
+
)
|
24 |
+
with tab1:
|
25 |
+
st.write(bertopic_model.visualize_barchart(top_n_topics=20))
|
26 |
+
with tab2:
|
27 |
+
st.write(bertopic_model.visualize_topics())
|
28 |
+
with tab3:
|
29 |
+
st.write(
|
30 |
+
bertopic_model.visualize_distribution(
|
31 |
+
bertopic_model.probabilities_[0], min_probability=0.015
|
32 |
+
)
|
33 |
+
)
|
34 |
+
with tab4:
|
35 |
+
st.write(bertopic_model.visualize_hierarchy())
|
36 |
+
with tab5:
|
37 |
+
st.write(bertopic_model.visualize_heatmap())
|
38 |
+
|
39 |
+
|
40 |
+
if __name__ == "__main__":
|
41 |
+
topic_model_results()
|
pages/2_π€_Models.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from streamlit_extras.tags import tagger_component
|
3 |
+
import re
|
4 |
+
import pickle
|
5 |
+
from keybert import KeyBERT
|
6 |
+
from bertopic import BERTopic
|
7 |
+
from keras.models import load_model
|
8 |
+
from keras.preprocessing.sequence import pad_sequences
|
9 |
+
|
10 |
+
|
11 |
+
# Load the BERTopic model
|
12 |
+
@st.cache_resource
|
13 |
+
def load_models():
|
14 |
+
return (
|
15 |
+
BERTopic.load(r"Models/stackexchange_topic_model.pkl"),
|
16 |
+
KeyBERT("all-MiniLM-L6-v2"),
|
17 |
+
load_model(r"Models/tag_model.h5"),
|
18 |
+
pickle.load(open(r"Models/token.pkl", "rb")),
|
19 |
+
pickle.load(open(r"Models/bin.pkl", "rb")),
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
# Load the model into memory
|
24 |
+
bertopic_model, keybert_model, cnn_model, tokenizer, binarizer = load_models()
|
25 |
+
|
26 |
+
|
27 |
+
# Clean the input text
|
28 |
+
def clean_text(text):
|
29 |
+
text = re.sub(r"<.*?>", "", text)
|
30 |
+
text = re.sub(r"[^A-Za-z']", " ", text)
|
31 |
+
text = re.sub(r"\s+", " ", text)
|
32 |
+
return text
|
33 |
+
|
34 |
+
|
35 |
+
# Assign tags to the input text using the CNN model
|
36 |
+
def tag_cnn_model(text):
|
37 |
+
text = clean_text(text)
|
38 |
+
text = tokenizer.texts_to_sequences([text])
|
39 |
+
text_padded = pad_sequences(text, maxlen=512)
|
40 |
+
q_pred = cnn_model.predict(text_padded)
|
41 |
+
q_pred = (q_pred >= 0.25).astype(int)
|
42 |
+
return binarizer.inverse_transform(q_pred)
|
43 |
+
|
44 |
+
|
45 |
+
# Retrieve the keyphrases from the input text using the KeyBERT model
|
46 |
+
def retrieve_keyphrases(text, n, ngram_range):
|
47 |
+
keywords = keybert_model.extract_keywords(
|
48 |
+
text,
|
49 |
+
keyphrase_ngram_range=ngram_range,
|
50 |
+
top_n=n,
|
51 |
+
diversity=0.5,
|
52 |
+
use_maxsum=True,
|
53 |
+
use_mmr=True,
|
54 |
+
seed_keywords=[
|
55 |
+
"machine-learning",
|
56 |
+
"r",
|
57 |
+
"regression",
|
58 |
+
"deep-learning",
|
59 |
+
"neural-networks",
|
60 |
+
"data-request",
|
61 |
+
"python",
|
62 |
+
"reinforcement-learning",
|
63 |
+
"classification",
|
64 |
+
"time-series",
|
65 |
+
"probability",
|
66 |
+
"neural-network",
|
67 |
+
"distributions",
|
68 |
+
"bayesian",
|
69 |
+
"hypothesis-testing",
|
70 |
+
"keras",
|
71 |
+
"mathematical-statistics",
|
72 |
+
"scikit-learn",
|
73 |
+
"logistic",
|
74 |
+
"convolutional-neural-networks",
|
75 |
+
"clustering",
|
76 |
+
"tensorflow",
|
77 |
+
"terminology",
|
78 |
+
"nlp",
|
79 |
+
"correlation",
|
80 |
+
"self-study",
|
81 |
+
"normal-distribution",
|
82 |
+
"geospatial",
|
83 |
+
"cross-validation",
|
84 |
+
"optimization",
|
85 |
+
"random-forest",
|
86 |
+
"mixed-model",
|
87 |
+
"data-mining",
|
88 |
+
"feature-selection",
|
89 |
+
"pca",
|
90 |
+
"references",
|
91 |
+
"computer-vision",
|
92 |
+
"data-visualization",
|
93 |
+
"confidence-interval",
|
94 |
+
"generalized-linear-model",
|
95 |
+
"variance",
|
96 |
+
"natural-language-processing",
|
97 |
+
"dataset",
|
98 |
+
"svm",
|
99 |
+
"training",
|
100 |
+
"maximum-likelihood",
|
101 |
+
"statistical-significance",
|
102 |
+
"gradient-descent",
|
103 |
+
"multiple-regression",
|
104 |
+
"estimation",
|
105 |
+
],
|
106 |
+
)
|
107 |
+
return sorted(keywords, key=lambda x: x[1], reverse=True)
|
108 |
+
|
109 |
+
|
110 |
+
# Find the most similar topics for the input text using the BERTopic model
|
111 |
+
def output_unsupervised(text, n):
|
112 |
+
new_review = text
|
113 |
+
similar_topics, similarity = bertopic_model.find_topics(new_review, top_n=n)
|
114 |
+
similar_topics = sorted(similar_topics)
|
115 |
+
for i in range(n):
|
116 |
+
tags = bertopic_model.get_topic(similar_topics[i])
|
117 |
+
tags = [tag[0] for tag in tags]
|
118 |
+
tagger_component(f"Tags from cluster {i+1}:", tags, color_name="red")
|
119 |
+
|
120 |
+
|
121 |
+
# Display the supervised model page of the app
|
122 |
+
def supervised_page():
|
123 |
+
st.header("Supervised Model")
|
124 |
+
text = st.text_area("Enter text to assign tags", height=200, key="supervised_text")
|
125 |
+
text = clean_text(text)
|
126 |
+
if st.button("Assign tags", key="supervised_button"):
|
127 |
+
tags = tag_cnn_model(text)[0]
|
128 |
+
tagger_component("Tags:", tags, color_name="red")
|
129 |
+
|
130 |
+
|
131 |
+
# Display the unsupervised model using bertopic page of the app
|
132 |
+
def unsupervised_page_bertopic():
|
133 |
+
st.header("Unsupervised Model Using BERTopic Model")
|
134 |
+
text = st.text_area(
|
135 |
+
"Enter text to assign tags", height=200, key="unsupervised_text_bertopic"
|
136 |
+
)
|
137 |
+
text = clean_text(text)
|
138 |
+
n = st.number_input(
|
139 |
+
"Enter number of tags to assign", value=5, key="unsupervised_n_bertopic"
|
140 |
+
)
|
141 |
+
if st.button("Assign tags", key="unsupervised_button_bertopic"):
|
142 |
+
output_unsupervised(text, n)
|
143 |
+
|
144 |
+
|
145 |
+
# Display the unsupervised model using keybert page of the app
|
146 |
+
def unsupervised_page_keybert():
|
147 |
+
st.header("Unsupervised Model Using KeyBERT Model")
|
148 |
+
text = st.text_area(
|
149 |
+
"Enter text to assign tags", height=200, key="unsupervised_text_keybert"
|
150 |
+
)
|
151 |
+
text = clean_text(text)
|
152 |
+
n = st.number_input(
|
153 |
+
"Enter number of tags to assign", value=10, key="unsupervised_n_keybert"
|
154 |
+
)
|
155 |
+
ngram_range_lower = st.number_input(
|
156 |
+
"Enter lower limit of ngram range",
|
157 |
+
value=1,
|
158 |
+
min_value=1,
|
159 |
+
max_value=6,
|
160 |
+
key="unsupervised_ngram_lower",
|
161 |
+
)
|
162 |
+
ngram_range_upper = st.number_input(
|
163 |
+
"Enter upper limit of ngram range",
|
164 |
+
value=3,
|
165 |
+
min_value=1,
|
166 |
+
max_value=6,
|
167 |
+
key="unsupervised_ngram_upper",
|
168 |
+
)
|
169 |
+
ngram_range = (ngram_range_lower, ngram_range_upper)
|
170 |
+
if st.button("Assign tags", key="unsupervised_button_keybert"):
|
171 |
+
topics = retrieve_keyphrases(text, n, ngram_range)
|
172 |
+
topics = [topic[0] for topic in topics]
|
173 |
+
tagger_component("Tags:", topics, color_name="red")
|
174 |
+
|
175 |
+
|
176 |
+
# Display the model page of the app
|
177 |
+
def model_page():
|
178 |
+
st.title("Select a model to use:")
|
179 |
+
tab1, tab2, tab3 = st.tabs(
|
180 |
+
["Supervised Using CNN", "Unsupervised-BERTopic", "Unsupervised-KeyBERT"]
|
181 |
+
)
|
182 |
+
with tab1:
|
183 |
+
supervised_page()
|
184 |
+
with tab2:
|
185 |
+
unsupervised_page_bertopic()
|
186 |
+
with tab3:
|
187 |
+
unsupervised_page_keybert()
|
188 |
+
|
189 |
+
|
190 |
+
if __name__ == "__main__":
|
191 |
+
model_page()
|
pages/3_π_About.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
|
4 |
+
# Display the about page of the app with information about the creator, code, and data
|
5 |
+
def about_page():
|
6 |
+
st.header("About")
|
7 |
+
st.write(
|
8 |
+
"This app was created by [Harshit Singh](https://harsh502s.github.io), Poorvi Singh and Samruddhi Raskar as a part of their MSc Data Science 3rd semester project."
|
9 |
+
)
|
10 |
+
st.write("The code for this app can be found [here]( ).")
|
11 |
+
st.write(
|
12 |
+
"The data on which these models are trained can be found [here](https://www.kaggle.com/datasets/harsh502s/stackexchange-tag-dataset)."
|
13 |
+
)
|
14 |
+
st.subheader("Models used in this app are:")
|
15 |
+
st.write(
|
16 |
+
"1. [BERTopic](https://maartengr.github.io/BERTopic/api/bertopic.html#:~:text=BERTopic%20is%20a%20topic%20modeling,words%20in%20the%20topic%20descriptions.)"
|
17 |
+
)
|
18 |
+
st.write(
|
19 |
+
"2. [KeyBERT](https://maartengr.github.io/KeyBERT/#:~:text=KeyBERT%20is%20a%20minimal%20and,most%20similar%20to%20a%20document.)"
|
20 |
+
)
|
21 |
+
st.write(
|
22 |
+
"3. [CNN](https://www.tensorflow.org/tutorials/text/text_classification_rnn)"
|
23 |
+
)
|
24 |
+
pass
|
25 |
+
|
26 |
+
|
27 |
+
if __name__ == "__main__":
|
28 |
+
about_page()
|
requirements.txt
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==2.0.0
|
2 |
+
altair==5.1.2
|
3 |
+
asttokens==2.4.0
|
4 |
+
astunparse==1.6.3
|
5 |
+
attrs==23.1.0
|
6 |
+
backcall==0.2.0
|
7 |
+
beautifulsoup4==4.12.2
|
8 |
+
bertopic==0.15.0
|
9 |
+
blinker==1.6.3
|
10 |
+
cachetools==5.3.1
|
11 |
+
certifi==2023.7.22
|
12 |
+
charset-normalizer==3.3.0
|
13 |
+
click==8.1.7
|
14 |
+
colorama==0.4.6
|
15 |
+
comm==0.1.4
|
16 |
+
contourpy==1.1.1
|
17 |
+
cycler==0.12.1
|
18 |
+
Cython==0.29.36
|
19 |
+
debugpy==1.8.0
|
20 |
+
decorator==5.1.1
|
21 |
+
entrypoints==0.4
|
22 |
+
exceptiongroup==1.1.3
|
23 |
+
executing==2.0.0
|
24 |
+
Faker==19.10.0
|
25 |
+
fastjsonschema==2.18.1
|
26 |
+
favicon==0.7.0
|
27 |
+
filelock==3.12.4
|
28 |
+
flatbuffers==23.5.26
|
29 |
+
fonttools==4.43.1
|
30 |
+
fsspec==2023.9.2
|
31 |
+
gast==0.5.4
|
32 |
+
gitdb==4.0.10
|
33 |
+
GitPython==3.1.37
|
34 |
+
google-auth==2.23.3
|
35 |
+
google-auth-oauthlib==1.0.0
|
36 |
+
google-pasta==0.2.0
|
37 |
+
grpcio==1.59.0
|
38 |
+
h5py==3.10.0
|
39 |
+
hdbscan==0.8.33
|
40 |
+
htbuilder==0.6.2
|
41 |
+
huggingface-hub==0.17.3
|
42 |
+
idna==3.4
|
43 |
+
importlib-metadata==6.8.0
|
44 |
+
ipykernel==6.25.2
|
45 |
+
ipython==8.16.1
|
46 |
+
jedi==0.19.1
|
47 |
+
Jinja2==3.1.2
|
48 |
+
joblib==1.3.2
|
49 |
+
jsonschema==4.19.1
|
50 |
+
jsonschema-specifications==2023.7.1
|
51 |
+
jupyter_client==8.3.1
|
52 |
+
jupyter_core==5.3.2
|
53 |
+
keras==2.14.0
|
54 |
+
keybert==0.8.3
|
55 |
+
kiwisolver==1.4.5
|
56 |
+
libclang==16.0.6
|
57 |
+
llvmlite==0.41.0
|
58 |
+
lxml==4.9.3
|
59 |
+
Markdown==3.5
|
60 |
+
markdown-it-py==3.0.0
|
61 |
+
markdownlit==0.0.7
|
62 |
+
MarkupSafe==2.1.3
|
63 |
+
matplotlib==3.8.0
|
64 |
+
matplotlib-inline==0.1.6
|
65 |
+
mdurl==0.1.2
|
66 |
+
ml-dtypes==0.2.0
|
67 |
+
more-itertools==10.1.0
|
68 |
+
mpmath==1.3.0
|
69 |
+
nbformat==5.9.2
|
70 |
+
nest-asyncio==1.5.8
|
71 |
+
networkx==3.1
|
72 |
+
nltk==3.8.1
|
73 |
+
numba==0.58.0
|
74 |
+
numpy==1.25.2
|
75 |
+
oauthlib==3.2.2
|
76 |
+
opt-einsum==3.3.0
|
77 |
+
packaging==23.2
|
78 |
+
pandas==2.1.1
|
79 |
+
parso==0.8.3
|
80 |
+
pickleshare==0.7.5
|
81 |
+
Pillow==10.0.1
|
82 |
+
platformdirs==3.11.0
|
83 |
+
plotly==5.17.0
|
84 |
+
prompt-toolkit==3.0.39
|
85 |
+
protobuf==4.24.4
|
86 |
+
psutil==5.9.5
|
87 |
+
pure-eval==0.2.2
|
88 |
+
pyarrow==13.0.0
|
89 |
+
pyasn1==0.5.0
|
90 |
+
pyasn1-modules==0.3.0
|
91 |
+
pydeck==0.8.1b0
|
92 |
+
Pygments==2.16.1
|
93 |
+
pymdown-extensions==10.3
|
94 |
+
pynndescent==0.5.10
|
95 |
+
pyparsing==3.1.1
|
96 |
+
python-dateutil==2.8.2
|
97 |
+
pytz==2023.3.post1
|
98 |
+
pywin32==306
|
99 |
+
PyYAML==6.0.1
|
100 |
+
pyzmq==25.1.1
|
101 |
+
referencing==0.30.2
|
102 |
+
regex==2023.10.3
|
103 |
+
requests==2.31.0
|
104 |
+
requests-oauthlib==1.3.1
|
105 |
+
rich==13.6.0
|
106 |
+
rpds-py==0.10.4
|
107 |
+
rsa==4.9
|
108 |
+
safetensors==0.4.0
|
109 |
+
scikit-learn==1.2.2
|
110 |
+
scipy==1.11.3
|
111 |
+
seaborn==0.13.0
|
112 |
+
sentence-transformers==2.2.2
|
113 |
+
sentencepiece==0.1.99
|
114 |
+
six==1.16.0
|
115 |
+
smmap==5.0.1
|
116 |
+
soupsieve==2.5
|
117 |
+
st-annotated-text==4.0.1
|
118 |
+
stack-data==0.6.3
|
119 |
+
streamlit==1.27.2
|
120 |
+
streamlit-camera-input-live==0.2.0
|
121 |
+
streamlit-card==0.0.61
|
122 |
+
streamlit-embedcode==0.1.2
|
123 |
+
streamlit-extras==0.3.4
|
124 |
+
streamlit-faker==0.0.2
|
125 |
+
streamlit-image-coordinates==0.1.6
|
126 |
+
streamlit-keyup==0.2.0
|
127 |
+
streamlit-tags==1.2.8
|
128 |
+
streamlit-toggle-switch==1.0.2
|
129 |
+
streamlit-vertical-slider==1.0.2
|
130 |
+
sympy==1.12
|
131 |
+
tenacity==8.2.3
|
132 |
+
tensorboard==2.14.1
|
133 |
+
tensorboard-data-server==0.7.1
|
134 |
+
tensorflow==2.14.0
|
135 |
+
tensorflow-estimator==2.14.0
|
136 |
+
tensorflow-intel==2.14.0
|
137 |
+
tensorflow-io-gcs-filesystem==0.31.0
|
138 |
+
termcolor==2.3.0
|
139 |
+
threadpoolctl==3.2.0
|
140 |
+
tokenizers==0.14.1
|
141 |
+
toml==0.10.2
|
142 |
+
toolz==0.12.0
|
143 |
+
torch==2.1.0
|
144 |
+
torchvision==0.16.0
|
145 |
+
tornado==6.3.3
|
146 |
+
tqdm==4.66.1
|
147 |
+
traitlets==5.11.2
|
148 |
+
transformers==4.34.0
|
149 |
+
typing_extensions==4.8.0
|
150 |
+
tzdata==2023.3
|
151 |
+
tzlocal==5.1
|
152 |
+
umap-learn==0.5.4
|
153 |
+
urllib3==2.0.6
|
154 |
+
validators==0.22.0
|
155 |
+
watchdog==3.0.0
|
156 |
+
wcwidth==0.2.8
|
157 |
+
Werkzeug==3.0.0
|
158 |
+
wrapt==1.14.1
|
159 |
+
zipp==3.17.0
|