Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
import spaces | |
import gradio as gr | |
# pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog") | |
# @spaces.GPU | |
# def predict(input_img): | |
# predictions = pipeline(input_img) | |
# return input_img, {p["label"]: p["score"] for p in predictions} | |
# gradio_app = gr.Interface( | |
# predict, | |
# inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"), | |
# outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)], | |
# title="Hot Dog? Or Not?", | |
# ).launch() | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
device = "cpu" # the device to load the model onto | |
model = AutoModelForCausalLM.from_pretrained( | |
"vilm/VinaLlama2-14B", | |
torch_dtype='auto', | |
device_map="auto" | |
) | |
tokenizer = AutoTokenizer.from_pretrained("vilm/VinaLlama2-14B") | |
def generate_response(input_text): | |
prompt = input_text | |
messages = [ | |
{"role": "system", "content": "BαΊ‘n lΓ trợ lΓ AI hα»―u Γch."}, | |
{"role": "user", "content": prompt} | |
] | |
text = tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
model_inputs = tokenizer([text], return_tensors="pt").to(device) | |
generated_ids = model.generate( | |
model_inputs.input_ids, | |
max_new_tokens=1024, | |
eos_token_id=tokenizer.eos_token_id, | |
temperature=0.25, | |
) | |
generated_ids = [ | |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) | |
] | |
response = tokenizer.batch_decode(generated_ids)[0] | |
return response | |
gradio_app = gr.Interface( | |
generate_response, | |
inputs="text", | |
outputs="text", | |
title="AI Chatbot", | |
).launch() |