testzerollm / app.py
harrypy's picture
chore: fix app.py
cce9d71
raw
history blame
1.85 kB
import gradio as gr
from transformers import pipeline
import spaces
import gradio as gr
# pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
# @spaces.GPU
# def predict(input_img):
# predictions = pipeline(input_img)
# return input_img, {p["label"]: p["score"] for p in predictions}
# gradio_app = gr.Interface(
# predict,
# inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
# outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
# title="Hot Dog? Or Not?",
# ).launch()
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
device = "cpu" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
"vilm/VinaLlama2-14B",
torch_dtype='auto',
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("vilm/VinaLlama2-14B")
@spaces.GPU
def generate_response(input_text):
prompt = input_text
messages = [
{"role": "system", "content": "Bẑn là trợ lí AI hữu ích."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=1024,
eos_token_id=tokenizer.eos_token_id,
temperature=0.25,
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids)[0]
return response
gradio_app = gr.Interface(
generate_response,
inputs="text",
outputs="text",
title="AI Chatbot",
).launch()