Spaces:
Sleeping
Sleeping
another version of app.py adding scores (#1)
Browse files- another version of app.py adding scores (ed932d0f8419765728ab376cdf30524bd696c60b)
Co-authored-by: Yinlin Fu <yinlinfu@users.noreply.huggingface.co>
appv2.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from streamlit_tags import st_tags, st_tags_sidebar
|
3 |
+
from keytotext import pipeline
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
import json
|
7 |
+
from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
8 |
+
import gzip
|
9 |
+
import os
|
10 |
+
import torch
|
11 |
+
import pickle
|
12 |
+
import random
|
13 |
+
import numpy as np
|
14 |
+
import pandas as pd
|
15 |
+
|
16 |
+
############
|
17 |
+
## Main page
|
18 |
+
############
|
19 |
+
|
20 |
+
st.write("# Demonstration for Etsy Query Expansion(Etsy-QE)")
|
21 |
+
|
22 |
+
st.markdown("***Idea is to build a model which will take query as inputs and generate expansion information as outputs.***")
|
23 |
+
image = Image.open('etsy-shop-LLC.png')
|
24 |
+
st.image(image)
|
25 |
+
|
26 |
+
st.sidebar.write("# Top-N Selection")
|
27 |
+
maxtags_sidebar = st.sidebar.slider('Number of query allowed?', 1, 20, 1, key='ehikwegrjifbwreuk')
|
28 |
+
#user_query = st_tags(
|
29 |
+
# label='# Enter Query:',
|
30 |
+
# text='Press enter to add more',
|
31 |
+
# value=['Mother'],
|
32 |
+
# suggestions=['gift', 'nike', 'wool'],
|
33 |
+
# maxtags=maxtags_sidebar,
|
34 |
+
# key="aljnf")
|
35 |
+
|
36 |
+
user_query = st.text_input("Enter a query for the generated text: e.g., gift, home decoration ...")
|
37 |
+
|
38 |
+
# Add selectbox in streamlit
|
39 |
+
option1 = st.sidebar.selectbox(
|
40 |
+
'Which transformers model would you like to be selected?',
|
41 |
+
('multi-qa-MiniLM-L6-cos-v1','null','null'))
|
42 |
+
|
43 |
+
option2 = st.sidebar.selectbox(
|
44 |
+
'Which corss-encoder model would you like to be selected?',
|
45 |
+
('cross-encoder/ms-marco-MiniLM-L-6-v2','null','null'))
|
46 |
+
|
47 |
+
st.sidebar.success("Load Successfully!")
|
48 |
+
|
49 |
+
#if not torch.cuda.is_available():
|
50 |
+
# print("Warning: No GPU found. Please add GPU to your notebook")
|
51 |
+
|
52 |
+
#We use the Bi-Encoder to encode all passages, so that we can use it with sematic search
|
53 |
+
bi_encoder = SentenceTransformer(option1,device='cpu')
|
54 |
+
bi_encoder.max_seq_length = 256 #Truncate long passages to 256 tokens
|
55 |
+
top_k = 32 #Number of passages we want to retrieve with the bi-encoder
|
56 |
+
|
57 |
+
#The bi-encoder will retrieve 100 documents. We use a cross-encoder, to re-rank the results list to improve the quality
|
58 |
+
cross_encoder = CrossEncoder(option2, device='cpu')
|
59 |
+
|
60 |
+
passages = []
|
61 |
+
|
62 |
+
# load pre-train embeedings files
|
63 |
+
embedding_cache_path = 'etsy-embeddings-cpu.pkl'
|
64 |
+
print("Load pre-computed embeddings from disc")
|
65 |
+
with open(embedding_cache_path, "rb") as fIn:
|
66 |
+
cache_data = pickle.load(fIn)
|
67 |
+
passages = cache_data['sentences']
|
68 |
+
corpus_embeddings = cache_data['embeddings']
|
69 |
+
|
70 |
+
from rank_bm25 import BM25Okapi
|
71 |
+
from sklearn.feature_extraction import _stop_words
|
72 |
+
import string
|
73 |
+
from tqdm.autonotebook import tqdm
|
74 |
+
import numpy as np
|
75 |
+
import re
|
76 |
+
|
77 |
+
import yake
|
78 |
+
|
79 |
+
language = "en"
|
80 |
+
max_ngram_size = 3
|
81 |
+
deduplication_threshold = 0.9
|
82 |
+
deduplication_algo = 'seqm'
|
83 |
+
windowSize = 3
|
84 |
+
numOfKeywords = 3
|
85 |
+
|
86 |
+
custom_kw_extractor = yake.KeywordExtractor(lan=language, n=max_ngram_size, dedupLim=deduplication_threshold, dedupFunc=deduplication_algo, windowsSize=windowSize, top=numOfKeywords, features=None)
|
87 |
+
# load query GMS information
|
88 |
+
with open('query_gms.json', 'r') as file:
|
89 |
+
query_gms_dict = json.load(file)
|
90 |
+
|
91 |
+
# We lower case our text and remove stop-words from indexing
|
92 |
+
def bm25_tokenizer(text):
|
93 |
+
tokenized_doc = []
|
94 |
+
for token in text.lower().split():
|
95 |
+
token = token.strip(string.punctuation)
|
96 |
+
|
97 |
+
if len(token) > 0 and token not in _stop_words.ENGLISH_STOP_WORDS:
|
98 |
+
tokenized_doc.append(token)
|
99 |
+
return tokenized_doc
|
100 |
+
|
101 |
+
tokenized_corpus = []
|
102 |
+
for passage in tqdm(passages):
|
103 |
+
tokenized_corpus.append(bm25_tokenizer(passage))
|
104 |
+
|
105 |
+
bm25 = BM25Okapi(tokenized_corpus)
|
106 |
+
|
107 |
+
def word_len(s):
|
108 |
+
return len([i for i in s.split(' ') if i])
|
109 |
+
|
110 |
+
|
111 |
+
# This function will search all wikipedia articles for passages that
|
112 |
+
# answer the query
|
113 |
+
DEFAULT_SCORE = -100.0
|
114 |
+
def clean_string(input_string):
|
115 |
+
string_sub1 = re.sub("([^\u0030-\u0039\u0041-\u007a])", ' ', input_string)
|
116 |
+
string_sub2 = re.sub("\x20\x20", "\n", string_sub1)
|
117 |
+
string_strip = string_sub2.strip().lower()
|
118 |
+
output_string = []
|
119 |
+
if len(string_strip) > 20:
|
120 |
+
keywords = custom_kw_extractor.extract_keywords(string_strip)
|
121 |
+
for tokens in keywords:
|
122 |
+
string_clean = tokens[0]
|
123 |
+
if word_len(string_clean) > 1:
|
124 |
+
output_string.append(string_clean)
|
125 |
+
else:
|
126 |
+
output_string.append(string_strip)
|
127 |
+
return output_string
|
128 |
+
|
129 |
+
def add_gms_score_for_candidates(candidates, query_gms_dict):
|
130 |
+
for query_candidate in candidates:
|
131 |
+
value = candidates[query_candidate]
|
132 |
+
value['gms'] = query_gms_dict.get(query_candidate, 0)
|
133 |
+
candidates[query_candidate] = value
|
134 |
+
return candidates
|
135 |
+
|
136 |
+
def generate_query_expansion_candidates(query):
|
137 |
+
print("Input query:", query)
|
138 |
+
expanded_query_set = {}
|
139 |
+
|
140 |
+
##### BM25 search (lexical search) #####
|
141 |
+
bm25_scores = bm25.get_scores(bm25_tokenizer(query))
|
142 |
+
# finds the indices of the top n scores
|
143 |
+
top_n_indices = np.argpartition(bm25_scores, -5)[-5:]
|
144 |
+
bm25_hits = [{'corpus_id': idx, 'bm25_score': bm25_scores[idx]} for idx in top_n_indices]
|
145 |
+
# bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True)
|
146 |
+
|
147 |
+
|
148 |
+
##### Sematic Search #####
|
149 |
+
# Encode the query using the bi-encoder and find potentially relevant passages
|
150 |
+
query_embedding = bi_encoder.encode(query, convert_to_tensor=True)
|
151 |
+
# query_embedding = query_embedding.cuda()
|
152 |
+
# Get the hits for the first query
|
153 |
+
encoder_hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k)[0]
|
154 |
+
|
155 |
+
# For all retrieved passages, add the cross_encoder scores
|
156 |
+
cross_inp = [[query, passages[hit['corpus_id']]] for hit in encoder_hits]
|
157 |
+
cross_scores = cross_encoder.predict(cross_inp)
|
158 |
+
for idx in range(len(cross_scores)):
|
159 |
+
encoder_hits[idx]['cross_score'] = cross_scores[idx]
|
160 |
+
|
161 |
+
candidates = {}
|
162 |
+
for hit in bm25_hits:
|
163 |
+
corpus_id = hit['corpus_id']
|
164 |
+
if corpus_id not in candidates:
|
165 |
+
candidates[corpus_id] = {'bm25_score': hit['bm25_score'], 'bi_score': DEFAULT_SCORE, 'cross_score': DEFAULT_SCORE}
|
166 |
+
for hit in encoder_hits:
|
167 |
+
corpus_id = hit['corpus_id']
|
168 |
+
if corpus_id not in candidates:
|
169 |
+
candidates[corpus_id] = {'bm25_score': DEFAULT_SCORE, 'bi_score': hit['score'], 'cross_score': hit['cross_score']}
|
170 |
+
else:
|
171 |
+
bm25_score = candidates[corpus_id]['bm25_score']
|
172 |
+
candidates[corpus_id].update({'bm25_score': bm25_score, 'bi_score': hit['score'], 'cross_score': hit['cross_score']})
|
173 |
+
|
174 |
+
final_candidates = {}
|
175 |
+
for key, value in candidates.items():
|
176 |
+
input_string = passages[key].replace("\n", "")
|
177 |
+
string_set = set(clean_string(input_string))
|
178 |
+
for item in string_set:
|
179 |
+
final_candidates[item] = value
|
180 |
+
# remove the query itself from candidates
|
181 |
+
if query in final_candidates:
|
182 |
+
del final_candidates[query]
|
183 |
+
|
184 |
+
# add gms column
|
185 |
+
for query_candidate in final_candidates:
|
186 |
+
value = final_candidates[query_candidate]
|
187 |
+
value['gms'] = query_gms_dict.get(query_candidate, 0)
|
188 |
+
final_candidates[query_candidate] = value
|
189 |
+
# Total Results
|
190 |
+
st.write("E-Commerce Query Expansion Candidates: \n")
|
191 |
+
return final_candidates
|
192 |
+
|
193 |
+
def re_rank_candidates(query, candidates, method):
|
194 |
+
if method == 'bm25':
|
195 |
+
# Filter and sort by bm25_score
|
196 |
+
filtered_sorted_result = sorted(
|
197 |
+
[(k, v) for k, v in candidates.items() if v['bm25_score'] > DEFAULT_SCORE],
|
198 |
+
key=lambda x: x[1]['bm25_score'],
|
199 |
+
reverse=True
|
200 |
+
)
|
201 |
+
elif method == 'bi_encoder':
|
202 |
+
# Filter and sort by bi_score
|
203 |
+
filtered_sorted_result = sorted(
|
204 |
+
[(k, v) for k, v in candidates.items() if v['bi_score'] > DEFAULT_SCORE],
|
205 |
+
key=lambda x: x[1]['bi_score'],
|
206 |
+
reverse=True
|
207 |
+
)
|
208 |
+
elif method == 'cross_encoder':
|
209 |
+
# Filter and sort by cross_score
|
210 |
+
filtered_sorted_result = sorted(
|
211 |
+
[(k, v) for k, v in candidates.items() if v['cross_score'] > DEFAULT_SCORE],
|
212 |
+
key=lambda x: x[1]['cross_score'],
|
213 |
+
reverse=True
|
214 |
+
)
|
215 |
+
elif method == 'gms':
|
216 |
+
filtered_sorted_by_encoder = sorted(
|
217 |
+
[(k, v) for k, v in candidates.items() if (v['cross_score'] > DEFAULT_SCORE) & (v['bi_score'] > DEFAULT_SCORE)],
|
218 |
+
key=lambda x: x[1]['cross_score'] + x[1]['bi_score'],
|
219 |
+
reverse=True
|
220 |
+
)
|
221 |
+
# first sort by cross_score + bi_score
|
222 |
+
filtered_sorted_result = sorted(filtered_sorted_by_encoder, key=lambda x: x[1]['gms'], reverse=True
|
223 |
+
)
|
224 |
+
else:
|
225 |
+
# use default method cross_score + bi_score
|
226 |
+
# Filter and sort by cross_score + bi_score
|
227 |
+
filtered_sorted_result = sorted(
|
228 |
+
[(k, v) for k, v in candidates.items() if (v['cross_score'] > DEFAULT_SCORE) & (v['bi_score'] > DEFAULT_SCORE)],
|
229 |
+
key=lambda x: x[1]['cross_score'] + x[1]['bi_score'],
|
230 |
+
reverse=True
|
231 |
+
)
|
232 |
+
data_dicts = [{'query': item[0], **item[1]} for item in filtered_sorted_result]
|
233 |
+
# Convert the list of dictionaries into a DataFrame
|
234 |
+
df = pd.DataFrame(data_dicts)
|
235 |
+
return df
|
236 |
+
|
237 |
+
|
238 |
+
# st.write("## Raw Candidates:")
|
239 |
+
if st.button('Generated Expansion'):
|
240 |
+
candidates = generate_query_expansion_candidates(query = user_query)
|
241 |
+
df = re_rank_candidates(user_query, candidates, method='cross_encoder')
|
242 |
+
result = list(df['query'][:maxtags_sidebar])
|
243 |
+
st.write(result)
|
244 |
+
## convert into dataframe
|
245 |
+
# data_dicts = [{'query': key, **values} for key, values in candidates.items()]
|
246 |
+
# df = pd.DataFrame(data_dicts)
|
247 |
+
# st.write(list(candidates.keys())[0:maxtags_sidebar])
|
248 |
+
# st.write(df)
|
249 |
+
# st.dataframe(df)
|
250 |
+
# st.success(raw_candidates)
|
251 |
+
|
252 |
+
if st.button('Rerank By GMS'):
|
253 |
+
candidates = generate_query_expansion_candidates(query = user_query)
|
254 |
+
df = re_rank_candidates(user_query, candidates, method='gms')
|
255 |
+
st.dataframe(df[['query', 'gms']][:maxtags_sidebar])
|