HarryLee yinlinfu commited on
Commit
ec37289
·
1 Parent(s): 487d029

another version of app.py adding scores (#1)

Browse files

- another version of app.py adding scores (ed932d0f8419765728ab376cdf30524bd696c60b)


Co-authored-by: Yinlin Fu <yinlinfu@users.noreply.huggingface.co>

Files changed (1) hide show
  1. appv2.py +255 -0
appv2.py ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from streamlit_tags import st_tags, st_tags_sidebar
3
+ from keytotext import pipeline
4
+ from PIL import Image
5
+
6
+ import json
7
+ from sentence_transformers import SentenceTransformer, CrossEncoder, util
8
+ import gzip
9
+ import os
10
+ import torch
11
+ import pickle
12
+ import random
13
+ import numpy as np
14
+ import pandas as pd
15
+
16
+ ############
17
+ ## Main page
18
+ ############
19
+
20
+ st.write("# Demonstration for Etsy Query Expansion(Etsy-QE)")
21
+
22
+ st.markdown("***Idea is to build a model which will take query as inputs and generate expansion information as outputs.***")
23
+ image = Image.open('etsy-shop-LLC.png')
24
+ st.image(image)
25
+
26
+ st.sidebar.write("# Top-N Selection")
27
+ maxtags_sidebar = st.sidebar.slider('Number of query allowed?', 1, 20, 1, key='ehikwegrjifbwreuk')
28
+ #user_query = st_tags(
29
+ # label='# Enter Query:',
30
+ # text='Press enter to add more',
31
+ # value=['Mother'],
32
+ # suggestions=['gift', 'nike', 'wool'],
33
+ # maxtags=maxtags_sidebar,
34
+ # key="aljnf")
35
+
36
+ user_query = st.text_input("Enter a query for the generated text: e.g., gift, home decoration ...")
37
+
38
+ # Add selectbox in streamlit
39
+ option1 = st.sidebar.selectbox(
40
+ 'Which transformers model would you like to be selected?',
41
+ ('multi-qa-MiniLM-L6-cos-v1','null','null'))
42
+
43
+ option2 = st.sidebar.selectbox(
44
+ 'Which corss-encoder model would you like to be selected?',
45
+ ('cross-encoder/ms-marco-MiniLM-L-6-v2','null','null'))
46
+
47
+ st.sidebar.success("Load Successfully!")
48
+
49
+ #if not torch.cuda.is_available():
50
+ # print("Warning: No GPU found. Please add GPU to your notebook")
51
+
52
+ #We use the Bi-Encoder to encode all passages, so that we can use it with sematic search
53
+ bi_encoder = SentenceTransformer(option1,device='cpu')
54
+ bi_encoder.max_seq_length = 256 #Truncate long passages to 256 tokens
55
+ top_k = 32 #Number of passages we want to retrieve with the bi-encoder
56
+
57
+ #The bi-encoder will retrieve 100 documents. We use a cross-encoder, to re-rank the results list to improve the quality
58
+ cross_encoder = CrossEncoder(option2, device='cpu')
59
+
60
+ passages = []
61
+
62
+ # load pre-train embeedings files
63
+ embedding_cache_path = 'etsy-embeddings-cpu.pkl'
64
+ print("Load pre-computed embeddings from disc")
65
+ with open(embedding_cache_path, "rb") as fIn:
66
+ cache_data = pickle.load(fIn)
67
+ passages = cache_data['sentences']
68
+ corpus_embeddings = cache_data['embeddings']
69
+
70
+ from rank_bm25 import BM25Okapi
71
+ from sklearn.feature_extraction import _stop_words
72
+ import string
73
+ from tqdm.autonotebook import tqdm
74
+ import numpy as np
75
+ import re
76
+
77
+ import yake
78
+
79
+ language = "en"
80
+ max_ngram_size = 3
81
+ deduplication_threshold = 0.9
82
+ deduplication_algo = 'seqm'
83
+ windowSize = 3
84
+ numOfKeywords = 3
85
+
86
+ custom_kw_extractor = yake.KeywordExtractor(lan=language, n=max_ngram_size, dedupLim=deduplication_threshold, dedupFunc=deduplication_algo, windowsSize=windowSize, top=numOfKeywords, features=None)
87
+ # load query GMS information
88
+ with open('query_gms.json', 'r') as file:
89
+ query_gms_dict = json.load(file)
90
+
91
+ # We lower case our text and remove stop-words from indexing
92
+ def bm25_tokenizer(text):
93
+ tokenized_doc = []
94
+ for token in text.lower().split():
95
+ token = token.strip(string.punctuation)
96
+
97
+ if len(token) > 0 and token not in _stop_words.ENGLISH_STOP_WORDS:
98
+ tokenized_doc.append(token)
99
+ return tokenized_doc
100
+
101
+ tokenized_corpus = []
102
+ for passage in tqdm(passages):
103
+ tokenized_corpus.append(bm25_tokenizer(passage))
104
+
105
+ bm25 = BM25Okapi(tokenized_corpus)
106
+
107
+ def word_len(s):
108
+ return len([i for i in s.split(' ') if i])
109
+
110
+
111
+ # This function will search all wikipedia articles for passages that
112
+ # answer the query
113
+ DEFAULT_SCORE = -100.0
114
+ def clean_string(input_string):
115
+ string_sub1 = re.sub("([^\u0030-\u0039\u0041-\u007a])", ' ', input_string)
116
+ string_sub2 = re.sub("\x20\x20", "\n", string_sub1)
117
+ string_strip = string_sub2.strip().lower()
118
+ output_string = []
119
+ if len(string_strip) > 20:
120
+ keywords = custom_kw_extractor.extract_keywords(string_strip)
121
+ for tokens in keywords:
122
+ string_clean = tokens[0]
123
+ if word_len(string_clean) > 1:
124
+ output_string.append(string_clean)
125
+ else:
126
+ output_string.append(string_strip)
127
+ return output_string
128
+
129
+ def add_gms_score_for_candidates(candidates, query_gms_dict):
130
+ for query_candidate in candidates:
131
+ value = candidates[query_candidate]
132
+ value['gms'] = query_gms_dict.get(query_candidate, 0)
133
+ candidates[query_candidate] = value
134
+ return candidates
135
+
136
+ def generate_query_expansion_candidates(query):
137
+ print("Input query:", query)
138
+ expanded_query_set = {}
139
+
140
+ ##### BM25 search (lexical search) #####
141
+ bm25_scores = bm25.get_scores(bm25_tokenizer(query))
142
+ # finds the indices of the top n scores
143
+ top_n_indices = np.argpartition(bm25_scores, -5)[-5:]
144
+ bm25_hits = [{'corpus_id': idx, 'bm25_score': bm25_scores[idx]} for idx in top_n_indices]
145
+ # bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True)
146
+
147
+
148
+ ##### Sematic Search #####
149
+ # Encode the query using the bi-encoder and find potentially relevant passages
150
+ query_embedding = bi_encoder.encode(query, convert_to_tensor=True)
151
+ # query_embedding = query_embedding.cuda()
152
+ # Get the hits for the first query
153
+ encoder_hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k)[0]
154
+
155
+ # For all retrieved passages, add the cross_encoder scores
156
+ cross_inp = [[query, passages[hit['corpus_id']]] for hit in encoder_hits]
157
+ cross_scores = cross_encoder.predict(cross_inp)
158
+ for idx in range(len(cross_scores)):
159
+ encoder_hits[idx]['cross_score'] = cross_scores[idx]
160
+
161
+ candidates = {}
162
+ for hit in bm25_hits:
163
+ corpus_id = hit['corpus_id']
164
+ if corpus_id not in candidates:
165
+ candidates[corpus_id] = {'bm25_score': hit['bm25_score'], 'bi_score': DEFAULT_SCORE, 'cross_score': DEFAULT_SCORE}
166
+ for hit in encoder_hits:
167
+ corpus_id = hit['corpus_id']
168
+ if corpus_id not in candidates:
169
+ candidates[corpus_id] = {'bm25_score': DEFAULT_SCORE, 'bi_score': hit['score'], 'cross_score': hit['cross_score']}
170
+ else:
171
+ bm25_score = candidates[corpus_id]['bm25_score']
172
+ candidates[corpus_id].update({'bm25_score': bm25_score, 'bi_score': hit['score'], 'cross_score': hit['cross_score']})
173
+
174
+ final_candidates = {}
175
+ for key, value in candidates.items():
176
+ input_string = passages[key].replace("\n", "")
177
+ string_set = set(clean_string(input_string))
178
+ for item in string_set:
179
+ final_candidates[item] = value
180
+ # remove the query itself from candidates
181
+ if query in final_candidates:
182
+ del final_candidates[query]
183
+
184
+ # add gms column
185
+ for query_candidate in final_candidates:
186
+ value = final_candidates[query_candidate]
187
+ value['gms'] = query_gms_dict.get(query_candidate, 0)
188
+ final_candidates[query_candidate] = value
189
+ # Total Results
190
+ st.write("E-Commerce Query Expansion Candidates: \n")
191
+ return final_candidates
192
+
193
+ def re_rank_candidates(query, candidates, method):
194
+ if method == 'bm25':
195
+ # Filter and sort by bm25_score
196
+ filtered_sorted_result = sorted(
197
+ [(k, v) for k, v in candidates.items() if v['bm25_score'] > DEFAULT_SCORE],
198
+ key=lambda x: x[1]['bm25_score'],
199
+ reverse=True
200
+ )
201
+ elif method == 'bi_encoder':
202
+ # Filter and sort by bi_score
203
+ filtered_sorted_result = sorted(
204
+ [(k, v) for k, v in candidates.items() if v['bi_score'] > DEFAULT_SCORE],
205
+ key=lambda x: x[1]['bi_score'],
206
+ reverse=True
207
+ )
208
+ elif method == 'cross_encoder':
209
+ # Filter and sort by cross_score
210
+ filtered_sorted_result = sorted(
211
+ [(k, v) for k, v in candidates.items() if v['cross_score'] > DEFAULT_SCORE],
212
+ key=lambda x: x[1]['cross_score'],
213
+ reverse=True
214
+ )
215
+ elif method == 'gms':
216
+ filtered_sorted_by_encoder = sorted(
217
+ [(k, v) for k, v in candidates.items() if (v['cross_score'] > DEFAULT_SCORE) & (v['bi_score'] > DEFAULT_SCORE)],
218
+ key=lambda x: x[1]['cross_score'] + x[1]['bi_score'],
219
+ reverse=True
220
+ )
221
+ # first sort by cross_score + bi_score
222
+ filtered_sorted_result = sorted(filtered_sorted_by_encoder, key=lambda x: x[1]['gms'], reverse=True
223
+ )
224
+ else:
225
+ # use default method cross_score + bi_score
226
+ # Filter and sort by cross_score + bi_score
227
+ filtered_sorted_result = sorted(
228
+ [(k, v) for k, v in candidates.items() if (v['cross_score'] > DEFAULT_SCORE) & (v['bi_score'] > DEFAULT_SCORE)],
229
+ key=lambda x: x[1]['cross_score'] + x[1]['bi_score'],
230
+ reverse=True
231
+ )
232
+ data_dicts = [{'query': item[0], **item[1]} for item in filtered_sorted_result]
233
+ # Convert the list of dictionaries into a DataFrame
234
+ df = pd.DataFrame(data_dicts)
235
+ return df
236
+
237
+
238
+ # st.write("## Raw Candidates:")
239
+ if st.button('Generated Expansion'):
240
+ candidates = generate_query_expansion_candidates(query = user_query)
241
+ df = re_rank_candidates(user_query, candidates, method='cross_encoder')
242
+ result = list(df['query'][:maxtags_sidebar])
243
+ st.write(result)
244
+ ## convert into dataframe
245
+ # data_dicts = [{'query': key, **values} for key, values in candidates.items()]
246
+ # df = pd.DataFrame(data_dicts)
247
+ # st.write(list(candidates.keys())[0:maxtags_sidebar])
248
+ # st.write(df)
249
+ # st.dataframe(df)
250
+ # st.success(raw_candidates)
251
+
252
+ if st.button('Rerank By GMS'):
253
+ candidates = generate_query_expansion_candidates(query = user_query)
254
+ df = re_rank_candidates(user_query, candidates, method='gms')
255
+ st.dataframe(df[['query', 'gms']][:maxtags_sidebar])