HarryLee's picture
Upload app.py, version from Jiaqi (#3)
cbf3a17
raw
history blame
10.4 kB
import streamlit as st
from PIL import Image
import json
from sentence_transformers import SentenceTransformer, CrossEncoder, util
import pickle
import pandas as pd
############
## Main page
############
st.write("# Demonstration for Etsy Query Expansion(Etsy-QE)")
st.markdown("***Idea is to build a model which will take query as inputs and generate expansion information as outputs.***")
image = Image.open('etsy-shop-LLC.png')
st.image(image)
st.sidebar.write("# Top-N Selection")
maxtags_sidebar = st.sidebar.slider('Number of query allowed?', 1, 20, 1, key='ehikwegrjifbwreuk')
#user_query = st_tags(
# label='# Enter Query:',
# text='Press enter to add more',
# value=['Mother'],
# suggestions=['gift', 'nike', 'wool'],
# maxtags=maxtags_sidebar,
# key="aljnf")
user_query = st.text_input("Enter a query for the generated text: e.g., gift, home decoration ...")
# Add selectbox in streamlit
option1 = st.sidebar.selectbox(
'Which transformers model would you like to be selected?',
('multi-qa-MiniLM-L6-cos-v1','null','null'))
option2 = st.sidebar.selectbox(
'Which cross-encoder model would you like to be selected?',
('cross-encoder/ms-marco-MiniLM-L-6-v2','null','null'))
st.sidebar.success("Load Successfully!")
#if not torch.cuda.is_available():
# print("Warning: No GPU found. Please add GPU to your notebook")
#We use the Bi-Encoder to encode all passages, so that we can use it with sematic search
@st.cache_resource
def load_encoders(sentence_enc, cross_enc):
return SentenceTransformer(sentence_enc,device='cpu'), CrossEncoder(cross_enc,device='cpu')
bi_encoder, cross_encoder = load_encoders(option1,option2)
bi_encoder.max_seq_length = 256 #Truncate long passages to 256 tokens
top_k = 32 #Number of passages we want to retrieve with the bi-encoder
passages = []
# load pre-train embeedings files
@st.cache_resource
def load_pickle(path):
with open(path, "rb") as fIn:
cache_data = pickle.load(fIn)
passages = cache_data['sentences']
corpus_embeddings = cache_data['embeddings']
print("Load pre-computed embeddings from disc")
return passages,corpus_embeddings
embedding_cache_path = 'etsy-embeddings-cpu.pkl'
passages,corpus_embeddings = load_pickle(embedding_cache_path)
from rank_bm25 import BM25Okapi
from sklearn.feature_extraction import _stop_words
import string
from tqdm.autonotebook import tqdm
import numpy as np
import re
import yake
@st.cache_resource
def load_model():
language = "en"
max_ngram_size = 3
deduplication_threshold = 0.9
deduplication_algo = 'seqm'
windowSize = 3
numOfKeywords = 3
return yake.KeywordExtractor(lan=language, n=max_ngram_size, dedupLim=deduplication_threshold, dedupFunc=deduplication_algo, windowsSize=windowSize, top=numOfKeywords, features=None)
custom_kw_extractor = load_model()
# load query GMS information
@st.cache_resource
def load_json(path):
with open(path, 'r') as file:
query_gms_dict = json.load(file)
return query_gms_dict
query_gms_dict = load_json('query_gms.json')
# We lower case our text and remove stop-words from indexing
def bm25_tokenizer(text):
tokenized_doc = []
for token in text.lower().split():
token = token.strip(string.punctuation)
if len(token) > 0 and token not in _stop_words.ENGLISH_STOP_WORDS:
tokenized_doc.append(token)
return tokenized_doc
@st.cache_resource
def get_tokenized_corpus(passages,_tokenizer):
tokenized_corpus = []
for passage in passages:
tokenized_corpus.append(_tokenizer(passage))
return tokenized_corpus
tokenized_corpus = get_tokenized_corpus(passages,bm25_tokenizer)
bm25 = BM25Okapi(tokenized_corpus)
def word_len(s):
return len([i for i in s.split(' ') if i])
# This function will search all wikipedia articles for passages that
# answer the query
DEFAULT_SCORE = -100.0
def clean_string(input_string):
string_sub1 = re.sub("([^\u0030-\u0039\u0041-\u007a])", ' ', input_string)
string_sub2 = re.sub("\x20\x20", "\n", string_sub1)
string_strip = string_sub2.strip().lower()
output_string = []
if len(string_strip) > 20:
keywords = custom_kw_extractor.extract_keywords(string_strip)
for tokens in keywords:
string_clean = tokens[0]
if word_len(string_clean) > 1:
output_string.append(string_clean)
else:
output_string.append(string_strip)
return output_string
# def add_gms_score_for_candidates(candidates, query_gms_dict):
# for query_candidate in candidates:
# value = candidates[query_candidate]
# value['gms'] = query_gms_dict.get(query_candidate, 0)
# candidates[query_candidate] = value
# return candidates
def generate_query_expansion_candidates(query):
print("Input query:", query)
expanded_query_set = {}
##### BM25 search (lexical search) #####
bm25_scores = bm25.get_scores(bm25_tokenizer(query))
# finds the indices of the top n scores
top_n_indices = np.argpartition(bm25_scores, -5)[-5:]
bm25_hits = [{'corpus_id': idx, 'bm25_score': bm25_scores[idx]} for idx in top_n_indices]
# bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True)
##### Sematic Search #####
# Encode the query using the bi-encoder and find potentially relevant passages
query_embedding = bi_encoder.encode(query, convert_to_tensor=True)
# query_embedding = query_embedding.cuda()
# Get the hits for the first query
encoder_hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k)[0]
# For all retrieved passages, add the cross_encoder scores
cross_inp = [[query, passages[hit['corpus_id']]] for hit in encoder_hits]
cross_scores = cross_encoder.predict(cross_inp)
for idx in range(len(cross_scores)):
encoder_hits[idx]['cross_score'] = cross_scores[idx]
candidates = {}
for hit in bm25_hits:
corpus_id = hit['corpus_id']
if corpus_id not in candidates:
candidates[corpus_id] = {'bm25_score': hit['bm25_score'], 'bi_score': DEFAULT_SCORE, 'cross_score': DEFAULT_SCORE}
for hit in encoder_hits:
corpus_id = hit['corpus_id']
if corpus_id not in candidates:
candidates[corpus_id] = {'bm25_score': DEFAULT_SCORE, 'bi_score': hit['score'], 'cross_score': hit['cross_score']}
else:
bm25_score = candidates[corpus_id]['bm25_score']
candidates[corpus_id].update({'bm25_score': bm25_score, 'bi_score': hit['score'], 'cross_score': hit['cross_score']})
final_candidates = {}
for key, value in candidates.items():
input_string = passages[key].replace("\n", "")
string_set = set(clean_string(input_string))
for item in string_set:
final_candidates[item.replace("\n", " ")] = value
# remove the query itself from candidates
if query in final_candidates:
del final_candidates[query]
# print(final_candidates)
# add gms column
df = pd.DataFrame(final_candidates).T
df['gms'] = [query_gms_dict.get(i,0) for i in df.index]
# Total Results
return df.to_dict('index')
def re_rank_candidates(query, candidates, method):
if method == 'bm25':
# Filter and sort by bm25_score
filtered_sorted_result = sorted(
[(k, v) for k, v in candidates.items() if v['bm25_score'] > DEFAULT_SCORE],
key=lambda x: x[1]['bm25_score'],
reverse=True
)
elif method == 'bi_encoder':
# Filter and sort by bi_score
filtered_sorted_result = sorted(
[(k, v) for k, v in candidates.items() if v['bi_score'] > DEFAULT_SCORE],
key=lambda x: x[1]['bi_score'],
reverse=True
)
elif method == 'cross_encoder':
# Filter and sort by cross_score
filtered_sorted_result = sorted(
[(k, v) for k, v in candidates.items() if v['cross_score'] > DEFAULT_SCORE],
key=lambda x: x[1]['cross_score'],
reverse=True
)
elif method == 'gms':
filtered_sorted_by_encoder = sorted(
[(k, v) for k, v in candidates.items() if (v['cross_score'] > DEFAULT_SCORE) & (v['bi_score'] > DEFAULT_SCORE)],
key=lambda x: x[1]['cross_score'] + x[1]['bi_score'],
reverse=True
)
# first sort by cross_score + bi_score
filtered_sorted_result = sorted(filtered_sorted_by_encoder, key=lambda x: x[1]['gms'], reverse=True
)
else:
# use default method cross_score + bi_score
# Filter and sort by cross_score + bi_score
filtered_sorted_result = sorted(
[(k, v) for k, v in candidates.items() if (v['cross_score'] > DEFAULT_SCORE) & (v['bi_score'] > DEFAULT_SCORE)],
key=lambda x: x[1]['cross_score'] + x[1]['bi_score'],
reverse=True
)
data_dicts = [{'query': item[0], **item[1]} for item in filtered_sorted_result]
# Convert the list of dictionaries into a DataFrame
df = pd.DataFrame(data_dicts)
return df
# st.write("## Raw Candidates:")
if st.button('Generated Expansion'):
col1, col2 = st.columns(2)
candidates = generate_query_expansion_candidates(query = user_query)
with col1:
st.subheader('Original Ranking')
ranking_cross = re_rank_candidates(user_query, candidates, method='cross_encoder')
ranking_cross.index = ranking_cross.index+1
st.table(ranking_cross['query'][:maxtags_sidebar])
with col2:
st.subheader('GMS-sorted Ranking')
ranking_gms = re_rank_candidates(user_query, candidates, method='gms')
ranking_gms.index = ranking_gms.index + 1
st.table(ranking_gms[['query', 'gms']][:maxtags_sidebar])
## convert into dataframe
# data_dicts = [{'query': key, **values} for key, values in candidates.items()]
# df = pd.DataFrame(data_dicts)
# st.write(list(candidates.keys())[0:maxtags_sidebar])
# st.write(df)
# st.dataframe(df)
# st.success(raw_candidates)
#if st.button('Rerank By GMS'):
#candidates = generate_query_expansion_candidates(query = user_query)
#df = re_rank_candidates(user_query, candidates, method='gms')
#st.dataframe(df[['query', 'gms']][:maxtags_sidebar])