Spaces:
Runtime error
Runtime error
Upload real_n_fake_dataloader.py
Browse files
dataset/real_n_fake_dataloader.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# We will use this file to create a dataloader for the real and fake dataset
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import torch
|
5 |
+
from torchvision import transforms
|
6 |
+
from torch.utils.data import DataLoader, Dataset
|
7 |
+
from PIL import Image
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
import cv2
|
11 |
+
|
12 |
+
import cv2
|
13 |
+
import numpy as np
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
import pywt
|
16 |
+
|
17 |
+
class Extracted_Frames_Dataset(Dataset):
|
18 |
+
def __init__(self, root_dir, split = "train", transform = None, extend = 'None', multi_modal = "dct"):
|
19 |
+
"""
|
20 |
+
Args:
|
21 |
+
returns:
|
22 |
+
"""
|
23 |
+
AssertionError(split in ["train", "val", "test"]), "Split must be one of (train, val, test)"
|
24 |
+
self.multi_modal = multi_modal
|
25 |
+
self.root_dir = root_dir
|
26 |
+
self.split = split
|
27 |
+
self.transform = transform
|
28 |
+
if extend == 'faceswap':
|
29 |
+
self.dataset = pd.read_csv(os.path.join(root_dir, f"faceswap_extended_{self.split}.csv"))
|
30 |
+
elif extend == 'fsgan':
|
31 |
+
self.dataset = pd.read_csv(os.path.join(root_dir, f"fsgan_extended_{self.split}.csv"))
|
32 |
+
else:
|
33 |
+
self.dataset = pd.read_csv(os.path.join(root_dir, f"{self.split}.csv"))
|
34 |
+
|
35 |
+
|
36 |
+
def __len__(self):
|
37 |
+
return len(self.dataset)
|
38 |
+
|
39 |
+
def __getitem__(self, idx):
|
40 |
+
sample_input = self.get_sample_input(idx)
|
41 |
+
return sample_input
|
42 |
+
|
43 |
+
|
44 |
+
def get_sample_input(self, idx):
|
45 |
+
rgb_image = self.get_rgb_image(idx)
|
46 |
+
label = self.get_label(idx)
|
47 |
+
if self.multi_modal == "dct":
|
48 |
+
dct_image = self.get_dct_image(idx)
|
49 |
+
sample_input = {"rgb_image": rgb_image, "dct_image": dct_image, "label": label}
|
50 |
+
|
51 |
+
# dct_image = self.get_dct_image(idx)
|
52 |
+
elif self.multi_modal == "fft":
|
53 |
+
fft_image = self.get_fft_image(idx)
|
54 |
+
sample_input = {"rgb_image": rgb_image, "dct_image": fft_image, "label": label}
|
55 |
+
elif self.multi_modal == "hh":
|
56 |
+
hh_image = self.get_hh_image(idx)
|
57 |
+
sample_input = {"rgb_image": rgb_image, "dct_image": hh_image, "label": label}
|
58 |
+
else:
|
59 |
+
AssertionError("multi_modal must be one of (dct:discrete cosine transform, fft: fast forier transform, hh)")
|
60 |
+
|
61 |
+
return sample_input
|
62 |
+
|
63 |
+
|
64 |
+
def get_fft_image(self, idx):
|
65 |
+
gray_image_path = self.dataset.iloc[idx, 0]
|
66 |
+
gray_image = cv2.imread(gray_image_path, cv2.IMREAD_GRAYSCALE)
|
67 |
+
fft_image = self.compute_fft(gray_image)
|
68 |
+
if self.transform:
|
69 |
+
fft_image = self.transform(fft_image)
|
70 |
+
|
71 |
+
return fft_image
|
72 |
+
|
73 |
+
|
74 |
+
def compute_fft(self, image):
|
75 |
+
f = np.fft.fft2(image)
|
76 |
+
fshift = np.fft.fftshift(f)
|
77 |
+
magnitude_spectrum = 20 * np.log(np.abs(fshift) + 1) # Add 1 to avoid log(0)
|
78 |
+
return magnitude_spectrum
|
79 |
+
|
80 |
+
|
81 |
+
def get_hh_image(self, idx):
|
82 |
+
gray_image_path = self.dataset.iloc[idx, 0]
|
83 |
+
gray_image = cv2.imread(gray_image_path, cv2.IMREAD_GRAYSCALE)
|
84 |
+
hh_image = self.compute_hh(gray_image)
|
85 |
+
if self.transform:
|
86 |
+
hh_image = self.transform(hh_image)
|
87 |
+
return hh_image
|
88 |
+
|
89 |
+
def compute_hh(self, image):
|
90 |
+
coeffs2 = pywt.dwt2(image, 'haar')
|
91 |
+
LL, (LH, HL, HH) = coeffs2
|
92 |
+
return HH
|
93 |
+
|
94 |
+
def get_rgb_image(self, idx):
|
95 |
+
rgb_image_path = self.dataset.iloc[idx, 0]
|
96 |
+
rgb_image = Image.open(rgb_image_path)
|
97 |
+
if self.transform:
|
98 |
+
rgb_image = self.transform(rgb_image)
|
99 |
+
return rgb_image
|
100 |
+
|
101 |
+
def get_dct_image(self, idx):
|
102 |
+
rgb_image_path = self.dataset.iloc[idx, 0]
|
103 |
+
rgb_image = cv2.imread(rgb_image_path)
|
104 |
+
dct_image = self.compute_dct_color(rgb_image)
|
105 |
+
if self.transform:
|
106 |
+
dct_image = self.transform(dct_image)
|
107 |
+
|
108 |
+
return dct_image
|
109 |
+
|
110 |
+
def get_label(self, idx):
|
111 |
+
return self.dataset.iloc[idx, 1]
|
112 |
+
|
113 |
+
|
114 |
+
def compute_dct_color(self, image):
|
115 |
+
image_float = np.float32(image)
|
116 |
+
dct_image = np.zeros_like(image_float)
|
117 |
+
for i in range(3):
|
118 |
+
dct_image[:, :, i] = cv2.dct(image_float[:, :, i])
|
119 |
+
return dct_image
|