Spaces:
Running
Running
harlanhong
commited on
Commit
·
e418082
1
Parent(s):
c45e94d
force
Browse files- .gitignore +1 -0
- app.py +13 -106
- demo_dagan.py +92 -82
- depth.pth +0 -3
- encoder.pth +0 -3
- generator.pt +0 -3
- kp_detector.pt +0 -3
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
*.pyc
|
app.py
CHANGED
@@ -3,21 +3,14 @@ import shutil
|
|
3 |
import gradio as gr
|
4 |
from PIL import Image
|
5 |
import subprocess
|
|
|
6 |
#os.chdir('Restormer')
|
7 |
-
|
8 |
# Download sample images
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
import imageio
|
14 |
-
from skimage.transform import resize
|
15 |
-
import numpy as np
|
16 |
-
import modules.generator as G
|
17 |
-
import modules.keypoint_detector as KPD
|
18 |
-
import yaml
|
19 |
-
from collections import OrderedDict
|
20 |
-
import depth
|
21 |
|
22 |
examples = [['project/cartoon2.jpg','project/video1.mp4'],
|
23 |
['project/cartoon3.jpg','project/video2.mp4'],
|
@@ -25,9 +18,6 @@ examples = [['project/cartoon2.jpg','project/video1.mp4'],
|
|
25 |
['project/celeb2.jpg','project/video2.mp4'],
|
26 |
]
|
27 |
|
28 |
-
|
29 |
-
inference_on = ['Full Resolution Image', 'Downsampled Image']
|
30 |
-
|
31 |
title = "DaGAN"
|
32 |
description = """
|
33 |
Gradio demo for <b>Depth-Aware Generative Adversarial Network for Talking Head Video Generation</b>, CVPR 2022L. <a href='https://arxiv.org/abs/2203.06605'>[Paper]</a><a href='https://github.com/harlanhong/CVPR2022-DaGAN'>[Github Code]</a>\n
|
@@ -38,99 +28,16 @@ Gradio demo for <b>Depth-Aware Generative Adversarial Network for Talking Head V
|
|
38 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2203.06605'>Depth-Aware Generative Adversarial Network for Talking Head Video Generation</a> | <a href='https://github.com/harlanhong/CVPR2022-DaGAN'>Github Repo</a></p>"
|
39 |
|
40 |
|
41 |
-
def inference(
|
42 |
if not os.path.exists('temp'):
|
43 |
-
|
44 |
-
|
|
|
45 |
subprocess.run(cmd.split())
|
46 |
driving_video = "video_input.mp4"
|
47 |
-
output
|
48 |
-
|
49 |
-
|
50 |
-
generator = G.SPADEDepthAwareGenerator(**config['model_params']['generator_params'],**config['model_params']['common_params'])
|
51 |
-
config['model_params']['common_params']['num_channels'] = 4
|
52 |
-
kp_detector = KPD.KPDetector(**config['model_params']['kp_detector_params'],**config['model_params']['common_params'])
|
53 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
54 |
-
|
55 |
-
|
56 |
-
g_checkpoint = torch.load("generator.pt", map_location=device)
|
57 |
-
kp_checkpoint = torch.load("kp_detector.pt", map_location=device)
|
58 |
-
|
59 |
-
ckp_generator = OrderedDict((k.replace('module.',''),v) for k,v in g_checkpoint.items())
|
60 |
-
generator.load_state_dict(ckp_generator)
|
61 |
-
ckp_kp_detector = OrderedDict((k.replace('module.',''),v) for k,v in kp_checkpoint.items())
|
62 |
-
kp_detector.load_state_dict(ckp_kp_detector)
|
63 |
-
|
64 |
-
depth_encoder = depth.ResnetEncoder(18, False)
|
65 |
-
depth_decoder = depth.DepthDecoder(num_ch_enc=depth_encoder.num_ch_enc, scales=range(4))
|
66 |
-
loaded_dict_enc = torch.load('encoder.pth')
|
67 |
-
loaded_dict_dec = torch.load('depth.pth')
|
68 |
-
filtered_dict_enc = {k: v for k, v in loaded_dict_enc.items() if k in depth_encoder.state_dict()}
|
69 |
-
depth_encoder.load_state_dict(filtered_dict_enc)
|
70 |
-
ckp_depth_decoder= {k: v for k, v in loaded_dict_dec.items() if k in depth_decoder.state_dict()}
|
71 |
-
depth_decoder.load_state_dict(ckp_depth_decoder)
|
72 |
-
depth_encoder.eval()
|
73 |
-
depth_decoder.eval()
|
74 |
-
|
75 |
-
# device = torch.device('cpu')
|
76 |
-
# stx()
|
77 |
-
|
78 |
-
generator = generator.to(device)
|
79 |
-
kp_detector = kp_detector.to(device)
|
80 |
-
depth_encoder = depth_encoder.to(device)
|
81 |
-
depth_decoder = depth_decoder.to(device)
|
82 |
-
|
83 |
-
generator.eval()
|
84 |
-
kp_detector.eval()
|
85 |
-
depth_encoder.eval()
|
86 |
-
depth_decoder.eval()
|
87 |
-
|
88 |
-
img_multiple_of = 8
|
89 |
-
|
90 |
-
with torch.inference_mode():
|
91 |
-
if torch.cuda.is_available():
|
92 |
-
torch.cuda.ipc_collect()
|
93 |
-
torch.cuda.empty_cache()
|
94 |
-
source_image = imageio.imread(source_image)
|
95 |
-
reader = imageio.get_reader(driving_video)
|
96 |
-
fps = reader.get_meta_data()['fps']
|
97 |
-
driving_video = []
|
98 |
-
try:
|
99 |
-
for im in reader:
|
100 |
-
driving_video.append(im)
|
101 |
-
except RuntimeError:
|
102 |
-
pass
|
103 |
-
reader.close()
|
104 |
-
|
105 |
-
source_image = resize(source_image, (256, 256))[..., :3]
|
106 |
-
driving_video = [resize(frame, (256, 256))[..., :3] for frame in driving_video]
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
i = find_best_frame(source_image, driving_video)
|
111 |
-
print ("Best frame: " + str(i))
|
112 |
-
driving_forward = driving_video[i:]
|
113 |
-
driving_backward = driving_video[:(i+1)][::-1]
|
114 |
-
sources_forward, drivings_forward, predictions_forward,depth_forward = make_animation(source_image, driving_forward, generator, kp_detector, relative=True, adapt_movement_scale=True, cpu=False)
|
115 |
-
sources_backward, drivings_backward, predictions_backward,depth_backward = make_animation(source_image, driving_backward, generator, kp_detector, relative=True, adapt_movement_scale=True, cpu=False)
|
116 |
-
predictions = predictions_backward[::-1] + predictions_forward[1:]
|
117 |
-
sources = sources_backward[::-1] + sources_forward[1:]
|
118 |
-
drivings = drivings_backward[::-1] + drivings_forward[1:]
|
119 |
-
depth_gray = depth_backward[::-1] + depth_forward[1:]
|
120 |
-
|
121 |
-
imageio.mimsave(output, [np.concatenate((img_as_ubyte(s),img_as_ubyte(d),img_as_ubyte(p)),1) for (s,d,p) in zip(sources, drivings, predictions)], fps=fps)
|
122 |
-
imageio.mimsave("gray.mp4", depth_gray, fps=fps)
|
123 |
-
# merge the gray video
|
124 |
-
animation = np.array(imageio.mimread(output,memtest=False))
|
125 |
-
gray = np.array(imageio.mimread("gray.mp4",memtest=False))
|
126 |
-
|
127 |
-
src_dst = animation[:,:,:512,:]
|
128 |
-
animate = animation[:,:,512:,:]
|
129 |
-
merge = np.concatenate((src_dst,gray,animate),2)
|
130 |
-
imageio.mimsave(output, merge, fps=fps)
|
131 |
-
|
132 |
-
return output
|
133 |
-
|
134 |
gr.Interface(
|
135 |
inference,
|
136 |
[
|
|
|
3 |
import gradio as gr
|
4 |
from PIL import Image
|
5 |
import subprocess
|
6 |
+
|
7 |
#os.chdir('Restormer')
|
8 |
+
|
9 |
# Download sample images
|
10 |
+
os.system("wget https://github.com/swz30/Restormer/releases/download/v1.0/sample_images.zip")
|
11 |
+
shutil.unpack_archive('sample_images.zip')
|
12 |
+
os.remove('sample_images.zip')
|
13 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
examples = [['project/cartoon2.jpg','project/video1.mp4'],
|
16 |
['project/cartoon3.jpg','project/video2.mp4'],
|
|
|
18 |
['project/celeb2.jpg','project/video2.mp4'],
|
19 |
]
|
20 |
|
|
|
|
|
|
|
21 |
title = "DaGAN"
|
22 |
description = """
|
23 |
Gradio demo for <b>Depth-Aware Generative Adversarial Network for Talking Head Video Generation</b>, CVPR 2022L. <a href='https://arxiv.org/abs/2203.06605'>[Paper]</a><a href='https://github.com/harlanhong/CVPR2022-DaGAN'>[Github Code]</a>\n
|
|
|
28 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2203.06605'>Depth-Aware Generative Adversarial Network for Talking Head Video Generation</a> | <a href='https://github.com/harlanhong/CVPR2022-DaGAN'>Github Repo</a></p>"
|
29 |
|
30 |
|
31 |
+
def inference(img, video):
|
32 |
if not os.path.exists('temp'):
|
33 |
+
os.system('mkdir temp')
|
34 |
+
#### Resize the longer edge of the input image
|
35 |
+
cmd = f"ffmpeg -y -ss 00:00:00 -i {video} -to 00:00:08 -c copy temp/driving_video.mp4"
|
36 |
subprocess.run(cmd.split())
|
37 |
driving_video = "video_input.mp4"
|
38 |
+
os.system("python demo_dagan.py --source_image {} --driving_video 'temp/driving_video.mp4' --output 'temp/rst.mp4'".format(img))
|
39 |
+
return f'temp/rst.mp4'
|
40 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
gr.Interface(
|
42 |
inference,
|
43 |
[
|
demo_dagan.py
CHANGED
@@ -6,10 +6,19 @@
|
|
6 |
import torch
|
7 |
import torch.nn.functional as F
|
8 |
import os
|
|
|
|
|
9 |
import argparse
|
|
|
|
|
10 |
from scipy.spatial import ConvexHull
|
11 |
from tqdm import tqdm
|
12 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
13 |
parser = argparse.ArgumentParser(description='Test DaGAN on your own images')
|
14 |
parser.add_argument('--source_image', default='./temp/source.jpg', type=str, help='Directory of input source image')
|
15 |
parser.add_argument('--driving_video', default='./temp/driving.mp4', type=str, help='Directory for driving video')
|
@@ -62,6 +71,7 @@ def find_best_frame(source, driving, cpu=False):
|
|
62 |
frame_num = i
|
63 |
return frame_num
|
64 |
|
|
|
65 |
def make_animation(source_image, driving_video, generator, kp_detector, relative=True, adapt_movement_scale=True, cpu=False):
|
66 |
sources = []
|
67 |
drivings = []
|
@@ -111,88 +121,88 @@ def make_animation(source_image, driving_video, generator, kp_detector, relative
|
|
111 |
predictions.append(np.transpose(out['prediction'].data.cpu().numpy(), [0, 2, 3, 1])[0])
|
112 |
depth_gray.append(gray_driving)
|
113 |
return sources, drivings, predictions,depth_gray
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
|
141 |
-
#
|
142 |
-
#
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
#
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
|
198 |
# print(f"\nRestored images are saved at {out_dir}")
|
|
|
6 |
import torch
|
7 |
import torch.nn.functional as F
|
8 |
import os
|
9 |
+
from skimage import img_as_ubyte
|
10 |
+
import cv2
|
11 |
import argparse
|
12 |
+
import imageio
|
13 |
+
from skimage.transform import resize
|
14 |
from scipy.spatial import ConvexHull
|
15 |
from tqdm import tqdm
|
16 |
import numpy as np
|
17 |
+
import modules.generator as G
|
18 |
+
import modules.keypoint_detector as KPD
|
19 |
+
import yaml
|
20 |
+
from collections import OrderedDict
|
21 |
+
import depth
|
22 |
parser = argparse.ArgumentParser(description='Test DaGAN on your own images')
|
23 |
parser.add_argument('--source_image', default='./temp/source.jpg', type=str, help='Directory of input source image')
|
24 |
parser.add_argument('--driving_video', default='./temp/driving.mp4', type=str, help='Directory for driving video')
|
|
|
71 |
frame_num = i
|
72 |
return frame_num
|
73 |
|
74 |
+
|
75 |
def make_animation(source_image, driving_video, generator, kp_detector, relative=True, adapt_movement_scale=True, cpu=False):
|
76 |
sources = []
|
77 |
drivings = []
|
|
|
121 |
predictions.append(np.transpose(out['prediction'].data.cpu().numpy(), [0, 2, 3, 1])[0])
|
122 |
depth_gray.append(gray_driving)
|
123 |
return sources, drivings, predictions,depth_gray
|
124 |
+
with open("config/vox-adv-256.yaml") as f:
|
125 |
+
config = yaml.load(f)
|
126 |
+
generator = G.SPADEDepthAwareGenerator(**config['model_params']['generator_params'],**config['model_params']['common_params'])
|
127 |
+
config['model_params']['common_params']['num_channels'] = 4
|
128 |
+
kp_detector = KPD.KPDetector(**config['model_params']['kp_detector_params'],**config['model_params']['common_params'])
|
129 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
130 |
+
|
131 |
+
|
132 |
+
g_checkpoint = torch.load("generator.pt", map_location=device)
|
133 |
+
kp_checkpoint = torch.load("kp_detector.pt", map_location=device)
|
134 |
+
|
135 |
+
ckp_generator = OrderedDict((k.replace('module.',''),v) for k,v in g_checkpoint.items())
|
136 |
+
generator.load_state_dict(ckp_generator)
|
137 |
+
ckp_kp_detector = OrderedDict((k.replace('module.',''),v) for k,v in kp_checkpoint.items())
|
138 |
+
kp_detector.load_state_dict(ckp_kp_detector)
|
139 |
+
|
140 |
+
depth_encoder = depth.ResnetEncoder(18, False)
|
141 |
+
depth_decoder = depth.DepthDecoder(num_ch_enc=depth_encoder.num_ch_enc, scales=range(4))
|
142 |
+
loaded_dict_enc = torch.load('encoder.pth')
|
143 |
+
loaded_dict_dec = torch.load('depth.pth')
|
144 |
+
filtered_dict_enc = {k: v for k, v in loaded_dict_enc.items() if k in depth_encoder.state_dict()}
|
145 |
+
depth_encoder.load_state_dict(filtered_dict_enc)
|
146 |
+
ckp_depth_decoder= {k: v for k, v in loaded_dict_dec.items() if k in depth_decoder.state_dict()}
|
147 |
+
depth_decoder.load_state_dict(ckp_depth_decoder)
|
148 |
+
depth_encoder.eval()
|
149 |
+
depth_decoder.eval()
|
150 |
|
151 |
+
# device = torch.device('cpu')
|
152 |
+
# stx()
|
153 |
+
|
154 |
+
generator = generator.to(device)
|
155 |
+
kp_detector = kp_detector.to(device)
|
156 |
+
depth_encoder = depth_encoder.to(device)
|
157 |
+
depth_decoder = depth_decoder.to(device)
|
158 |
+
|
159 |
+
generator.eval()
|
160 |
+
kp_detector.eval()
|
161 |
+
depth_encoder.eval()
|
162 |
+
depth_decoder.eval()
|
163 |
+
|
164 |
+
img_multiple_of = 8
|
165 |
+
|
166 |
+
with torch.inference_mode():
|
167 |
+
if torch.cuda.is_available():
|
168 |
+
torch.cuda.ipc_collect()
|
169 |
+
torch.cuda.empty_cache()
|
170 |
+
source_image = imageio.imread(args.source_image)
|
171 |
+
reader = imageio.get_reader(args.driving_video)
|
172 |
+
fps = reader.get_meta_data()['fps']
|
173 |
+
driving_video = []
|
174 |
+
try:
|
175 |
+
for im in reader:
|
176 |
+
driving_video.append(im)
|
177 |
+
except RuntimeError:
|
178 |
+
pass
|
179 |
+
reader.close()
|
180 |
+
|
181 |
+
source_image = resize(source_image, (256, 256))[..., :3]
|
182 |
+
driving_video = [resize(frame, (256, 256))[..., :3] for frame in driving_video]
|
183 |
+
|
184 |
+
|
185 |
+
|
186 |
+
i = find_best_frame(source_image, driving_video)
|
187 |
+
print ("Best frame: " + str(i))
|
188 |
+
driving_forward = driving_video[i:]
|
189 |
+
driving_backward = driving_video[:(i+1)][::-1]
|
190 |
+
sources_forward, drivings_forward, predictions_forward,depth_forward = make_animation(source_image, driving_forward, generator, kp_detector, relative=True, adapt_movement_scale=True, cpu=False)
|
191 |
+
sources_backward, drivings_backward, predictions_backward,depth_backward = make_animation(source_image, driving_backward, generator, kp_detector, relative=True, adapt_movement_scale=True, cpu=False)
|
192 |
+
predictions = predictions_backward[::-1] + predictions_forward[1:]
|
193 |
+
sources = sources_backward[::-1] + sources_forward[1:]
|
194 |
+
drivings = drivings_backward[::-1] + drivings_forward[1:]
|
195 |
+
depth_gray = depth_backward[::-1] + depth_forward[1:]
|
196 |
+
|
197 |
+
imageio.mimsave(args.output, [np.concatenate((img_as_ubyte(s),img_as_ubyte(d),img_as_ubyte(p)),1) for (s,d,p) in zip(sources, drivings, predictions)], fps=fps)
|
198 |
+
imageio.mimsave("gray.mp4", depth_gray, fps=fps)
|
199 |
+
# merge the gray video
|
200 |
+
animation = np.array(imageio.mimread(args.output,memtest=False))
|
201 |
+
gray = np.array(imageio.mimread("gray.mp4",memtest=False))
|
202 |
+
|
203 |
+
src_dst = animation[:,:,:512,:]
|
204 |
+
animate = animation[:,:,512:,:]
|
205 |
+
merge = np.concatenate((src_dst,gray,animate),2)
|
206 |
+
imageio.mimsave(args.output, merge, fps=fps)
|
207 |
|
208 |
# print(f"\nRestored images are saved at {out_dir}")
|
depth.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:11eb72a1e520d6086d9f357b6740340a235b067acdd6d495049877de2772d1a4
|
3 |
-
size 12621521
|
|
|
|
|
|
|
|
encoder.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:de3d906dac888c2947cf0dabe319b8d3a5da98dd695d8b96512891f5c5a6bca3
|
3 |
-
size 46837645
|
|
|
|
|
|
|
|
generator.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:34ac6a18ca3b0d9df080990d4975d9f4db04f7216fa9dbe4d580e920ee4b2bde
|
3 |
-
size 270494161
|
|
|
|
|
|
|
|
kp_detector.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:6f03aac403bf71445163f22cd7f883548980603065326c6b8ee08b74ad18d1bd
|
3 |
-
size 57103620
|
|
|
|
|
|
|
|