Spaces:
Sleeping
Sleeping
Harika12323
commited on
init
Browse files- app.py +73 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import yolov5
|
6 |
+
from yolov5 import load
|
7 |
+
|
8 |
+
# Load YOLOv5 model
|
9 |
+
model = load('best.pt') # Replace with your model path
|
10 |
+
|
11 |
+
def detect_number_plate(frame):
|
12 |
+
# Convert frame to RGB
|
13 |
+
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
14 |
+
# Perform inference
|
15 |
+
results = model(img)
|
16 |
+
# Parse results
|
17 |
+
detections = results.pandas().xyxy[0]
|
18 |
+
plates = []
|
19 |
+
|
20 |
+
for _, row in detections.iterrows():
|
21 |
+
if row['name'] == 'number_plate': # Adjust based on your model�s class names
|
22 |
+
plates.append({
|
23 |
+
'class': row['name'],
|
24 |
+
'confidence': row['confidence'],
|
25 |
+
'x_min': row['xmin'],
|
26 |
+
'y_min': row['ymin'],
|
27 |
+
'x_max': row['xmax'],
|
28 |
+
'y_max': row['ymax']
|
29 |
+
})
|
30 |
+
|
31 |
+
return plates
|
32 |
+
|
33 |
+
def detect_smoke(frame):
|
34 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
35 |
+
blur = cv2.GaussianBlur(gray, (21, 21), 0)
|
36 |
+
_, thresh = cv2.threshold(blur, 200, 255, cv2.THRESH_BINARY)
|
37 |
+
|
38 |
+
smoke_intensity = np.sum(thresh) / (thresh.shape[0] * thresh.shape[1])
|
39 |
+
smoke_detected = smoke_intensity > 0.1 # Adjust this threshold
|
40 |
+
|
41 |
+
return smoke_detected, smoke_intensity
|
42 |
+
|
43 |
+
def process_frame(frame):
|
44 |
+
plates = detect_number_plate(frame)
|
45 |
+
smoke_detected, smoke_intensity = detect_smoke(frame)
|
46 |
+
return {
|
47 |
+
'smoke_detected': smoke_detected,
|
48 |
+
'smoke_intensity': smoke_intensity,
|
49 |
+
'number_plates': plates
|
50 |
+
}
|
51 |
+
|
52 |
+
# Streamlit app
|
53 |
+
st.title("Vehicle Number Plate and Smoke Detection")
|
54 |
+
|
55 |
+
uploaded_file = st.file_uploader("Choose an image...", type="jpg")
|
56 |
+
|
57 |
+
if uploaded_file is not None:
|
58 |
+
# Convert file to image
|
59 |
+
in_memory_file = uploaded_file.read()
|
60 |
+
np_arr = np.frombuffer(in_memory_file, np.uint8)
|
61 |
+
frame = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
|
62 |
+
|
63 |
+
# Process the frame
|
64 |
+
results = process_frame(frame)
|
65 |
+
|
66 |
+
st.subheader("Results")
|
67 |
+
st.write(f"Smoke Detected: {results['smoke_detected']}")
|
68 |
+
st.write(f"Smoke Intensity: {results['smoke_intensity']:.2f}")
|
69 |
+
|
70 |
+
st.subheader("Number Plates Detected")
|
71 |
+
for plate in results['number_plates']:
|
72 |
+
st.write(f"Class: {plate['class']}, Confidence: {plate['confidence']:.2f}")
|
73 |
+
st.write(f"Bounding Box: ({plate['x_min']}, {plate['y_min']}) to ({plate['x_max']}, {plate['y_max']})")
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
opencv-python-headless
|
3 |
+
numpy
|
4 |
+
torch
|
5 |
+
torchvision
|
6 |
+
yolov5
|