Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,343 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
import PyPDF2
|
5 |
+
import faiss
|
6 |
+
|
7 |
+
# LangChain imports
|
8 |
+
from langchain_groq import ChatGroq
|
9 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
10 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
+
from langchain.schema import Document
|
12 |
+
from langchain.prompts import PromptTemplate
|
13 |
+
from langchain.chains import RetrievalQA
|
14 |
+
from langchain.vectorstores import FAISS
|
15 |
+
from langchain.tools import Tool
|
16 |
+
from langchain.agents import initialize_agent, AgentType
|
17 |
+
from langchain.memory import ConversationBufferWindowMemory
|
18 |
+
|
19 |
+
# Load environment variables
|
20 |
+
load_dotenv()
|
21 |
+
|
22 |
+
class SmartAcademicAssistant:
|
23 |
+
def __init__(self):
|
24 |
+
# Initialize Groq LLM
|
25 |
+
self.llm = ChatGroq(
|
26 |
+
groq_api_key=os.getenv("GROQ_API_KEY"),
|
27 |
+
model_name="llama-3.1-8b-instant",
|
28 |
+
temperature=0.3,
|
29 |
+
max_tokens=1000
|
30 |
+
)
|
31 |
+
|
32 |
+
# Initialize HuggingFace embeddings
|
33 |
+
self.embeddings = HuggingFaceEmbeddings(
|
34 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2"
|
35 |
+
)
|
36 |
+
|
37 |
+
# Vector store for uploaded documents
|
38 |
+
self.vector_store = None
|
39 |
+
self.uploaded_docs = []
|
40 |
+
self.qa_chain = None
|
41 |
+
self.agent = None
|
42 |
+
|
43 |
+
# Memory for conversation
|
44 |
+
self.memory = ConversationBufferWindowMemory(
|
45 |
+
memory_key="chat_history",
|
46 |
+
k=3, # Keep last 3 exchanges
|
47 |
+
return_messages=True
|
48 |
+
)
|
49 |
+
|
50 |
+
# Text splitter for PDFs
|
51 |
+
self.text_splitter = RecursiveCharacterTextSplitter(
|
52 |
+
chunk_size=1000,
|
53 |
+
chunk_overlap=200
|
54 |
+
)
|
55 |
+
|
56 |
+
def extract_text_from_pdf(self, pdf_file) -> str:
|
57 |
+
"""Extract text from uploaded PDF file"""
|
58 |
+
try:
|
59 |
+
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
60 |
+
text = ""
|
61 |
+
for page in pdf_reader.pages:
|
62 |
+
text += page.extract_text() + "\n"
|
63 |
+
return text
|
64 |
+
except Exception as e:
|
65 |
+
return f"Error reading PDF: {str(e)}"
|
66 |
+
|
67 |
+
def process_uploaded_pdfs(self, files) -> str:
|
68 |
+
"""Process uploaded PDF files and create vector store"""
|
69 |
+
if not files:
|
70 |
+
return "No files uploaded."
|
71 |
+
|
72 |
+
all_documents = []
|
73 |
+
processed_files = []
|
74 |
+
|
75 |
+
for file in files:
|
76 |
+
if file.name.endswith('.pdf'):
|
77 |
+
# Extract text from PDF
|
78 |
+
text = self.extract_text_from_pdf(file.name)
|
79 |
+
if not text.startswith("Error"):
|
80 |
+
# Split text into chunks
|
81 |
+
documents = self.text_splitter.create_documents([text],
|
82 |
+
metadatas=[{"source": os.path.basename(file.name)}])
|
83 |
+
all_documents.extend(documents)
|
84 |
+
processed_files.append(file.name)
|
85 |
+
|
86 |
+
if all_documents:
|
87 |
+
# Create FAISS vector store
|
88 |
+
self.vector_store = FAISS.from_documents(all_documents, self.embeddings)
|
89 |
+
|
90 |
+
# Create QA chain with better prompt
|
91 |
+
qa_prompt = PromptTemplate(
|
92 |
+
template="""You are a helpful academic assistant. Answer the question based on the provided context from uploaded documents.
|
93 |
+
|
94 |
+
Context: {context}
|
95 |
+
|
96 |
+
Question: {question}
|
97 |
+
|
98 |
+
Important:
|
99 |
+
- Give a direct, comprehensive answer based on the context
|
100 |
+
- If information is not in the context, say so clearly
|
101 |
+
- Do not make up information not present in the documents
|
102 |
+
- Keep your answer focused and relevant
|
103 |
+
|
104 |
+
Answer:""",
|
105 |
+
input_variables=["context", "question"]
|
106 |
+
)
|
107 |
+
|
108 |
+
# Create retrieval QA chain
|
109 |
+
self.qa_chain = RetrievalQA.from_chain_type(
|
110 |
+
llm=self.llm,
|
111 |
+
chain_type="stuff",
|
112 |
+
retriever=self.vector_store.as_retriever(
|
113 |
+
search_type="similarity",
|
114 |
+
search_kwargs={"k": 4}
|
115 |
+
),
|
116 |
+
chain_type_kwargs={"prompt": qa_prompt},
|
117 |
+
return_source_documents=False # Prevent confusion
|
118 |
+
)
|
119 |
+
|
120 |
+
# Create tool for agent
|
121 |
+
def document_search_tool(query: str) -> str:
|
122 |
+
"""Search through uploaded PDF documents to answer questions"""
|
123 |
+
try:
|
124 |
+
result = self.qa_chain.invoke({"query": query})
|
125 |
+
return result["result"]
|
126 |
+
except Exception as e:
|
127 |
+
return f"Error searching documents: {str(e)}"
|
128 |
+
|
129 |
+
# Define tools with very specific descriptions
|
130 |
+
tools = [
|
131 |
+
Tool(
|
132 |
+
name="document_search",
|
133 |
+
func=document_search_tool,
|
134 |
+
description="""Use this tool ONLY when the user asks questions about the uploaded PDF documents.
|
135 |
+
This tool searches through the uploaded academic papers, textbooks, or documents to find relevant information.
|
136 |
+
Input should be the user's question exactly as asked.
|
137 |
+
DO NOT use this tool for general knowledge questions."""
|
138 |
+
)
|
139 |
+
]
|
140 |
+
|
141 |
+
# Create agent with strict instructions
|
142 |
+
agent_prompt = """You are a smart academic assistant. You have access to uploaded PDF documents through the document_search tool.
|
143 |
+
|
144 |
+
IMPORTANT RULES:
|
145 |
+
1. If the user asks about content from uploaded PDFs, use the document_search tool EXACTLY ONCE
|
146 |
+
2. For general knowledge questions, answer directly without using tools
|
147 |
+
3. Do NOT call tools multiple times for the same question
|
148 |
+
4. Do NOT use tools for math problems or general knowledge
|
149 |
+
5. Give your final answer immediately after using a tool
|
150 |
+
|
151 |
+
Available tools:
|
152 |
+
- document_search: Use for questions about uploaded PDF content only
|
153 |
+
|
154 |
+
Let's think step by step and provide helpful answers."""
|
155 |
+
|
156 |
+
self.agent = initialize_agent(
|
157 |
+
tools=tools,
|
158 |
+
llm=self.llm,
|
159 |
+
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
|
160 |
+
verbose=False, # Reduce verbosity to prevent loops
|
161 |
+
handle_parsing_errors=True,
|
162 |
+
max_execution_time=15, # Shorter timeout
|
163 |
+
max_iterations=3, # Limit iterations to prevent loops
|
164 |
+
early_stopping_method="generate",
|
165 |
+
memory=self.memory
|
166 |
+
)
|
167 |
+
|
168 |
+
self.uploaded_docs = processed_files
|
169 |
+
return f"โ
Successfully processed {len(processed_files)} PDF(s): {', '.join([os.path.basename(f) for f in processed_files])}\n\nRAG Agent is ready! You can now ask questions about the content!"
|
170 |
+
else:
|
171 |
+
return "โ No valid PDF files found or error processing files."
|
172 |
+
|
173 |
+
def tutor_mode_cot(self, math_problem: str) -> str:
|
174 |
+
"""Tutor mode with Chain-of-Thought reasoning for math problems"""
|
175 |
+
if not math_problem.strip():
|
176 |
+
return "Please enter a math problem."
|
177 |
+
|
178 |
+
cot_prompt = PromptTemplate(
|
179 |
+
input_variables=["problem"],
|
180 |
+
template="""You are an expert math tutor. Solve this math problem using Chain-of-Thought reasoning.
|
181 |
+
|
182 |
+
Problem: {problem}
|
183 |
+
|
184 |
+
Please solve this step-by-step:
|
185 |
+
1. First, understand what the problem is asking
|
186 |
+
2. Identify the key information and what needs to be found
|
187 |
+
3. Choose the appropriate method or formula
|
188 |
+
4. Show each step of the calculation clearly
|
189 |
+
5. Verify your answer makes sense
|
190 |
+
6. Provide the final answer
|
191 |
+
|
192 |
+
Step-by-step solution:"""
|
193 |
+
)
|
194 |
+
|
195 |
+
try:
|
196 |
+
# Format the prompt
|
197 |
+
formatted_prompt = cot_prompt.format(problem=math_problem)
|
198 |
+
|
199 |
+
# Get response from LLM
|
200 |
+
response = self.llm.invoke(formatted_prompt)
|
201 |
+
return response.content
|
202 |
+
except Exception as e:
|
203 |
+
return f"Error in tutor mode: {str(e)}\n\nPlease check your GROQ_API_KEY in the .env file."
|
204 |
+
|
205 |
+
def assistant_mode_rag(self, question: str) -> str:
|
206 |
+
"""Agent-based RAG Q&A from uploaded documents"""
|
207 |
+
if not question.strip():
|
208 |
+
return "Please enter a question."
|
209 |
+
|
210 |
+
if not self.vector_store or not self.agent:
|
211 |
+
return "โ ๏ธ Please upload at least one PDF file first to initialize the RAG agent."
|
212 |
+
|
213 |
+
try:
|
214 |
+
# Clear any previous conversation context that might cause loops
|
215 |
+
self.memory.clear()
|
216 |
+
|
217 |
+
# Use agent to answer question
|
218 |
+
result = self.agent.run(question)
|
219 |
+
|
220 |
+
return result
|
221 |
+
|
222 |
+
except Exception as e:
|
223 |
+
# Fallback to direct QA if agent fails
|
224 |
+
try:
|
225 |
+
fallback_result = self.qa_chain.invoke({"query": question})
|
226 |
+
return f"๐ Fallback answer:\n\n{fallback_result['result']}"
|
227 |
+
except:
|
228 |
+
return f"โ Error in agent mode: {str(e)}\n\nPlease try rephrasing your question or check your setup."
|
229 |
+
|
230 |
+
# Initialize the assistant
|
231 |
+
assistant = SmartAcademicAssistant()
|
232 |
+
|
233 |
+
# Create Gradio interface
|
234 |
+
def create_interface():
|
235 |
+
with gr.Blocks(title="Smart Academic Assistant", theme=gr.themes.Soft()) as demo:
|
236 |
+
gr.HTML("<h1 style='text-align: center; color: #2e86c1;'>๐ Smart Academic Assistant</h1>")
|
237 |
+
gr.HTML("<p style='text-align: center;'>Two modes: <b>Tutor</b> for math problems with CoT reasoning, <b>Assistant</b> for Q&A from your documents</p>")
|
238 |
+
|
239 |
+
with gr.Tabs():
|
240 |
+
# Tutor Mode Tab
|
241 |
+
with gr.Tab("๐งฎ Tutor Mode"):
|
242 |
+
gr.HTML("<h3>Math Problem Solver with Chain-of-Thought</h3>")
|
243 |
+
gr.HTML("<p>Enter any math problem and get step-by-step solution using CoT reasoning.</p>")
|
244 |
+
|
245 |
+
with gr.Row():
|
246 |
+
with gr.Column():
|
247 |
+
math_input = gr.Textbox(
|
248 |
+
label="Math Problem",
|
249 |
+
placeholder="e.g., Solve for x: 2x + 5 = 13\nor\nFind the derivative of f(x) = xยณ + 2xยฒ - x + 1",
|
250 |
+
lines=4
|
251 |
+
)
|
252 |
+
solve_btn = gr.Button("๐ Solve Problem", variant="primary")
|
253 |
+
|
254 |
+
# Example problems
|
255 |
+
gr.HTML("<b>Example problems to try:</b>")
|
256 |
+
gr.HTML("โข Solve: 3xยฒ - 12x + 9 = 0<br>โข Find integral of sin(2x)dx<br>โข Calculate: (2+3i)(4-i)")
|
257 |
+
|
258 |
+
with gr.Column():
|
259 |
+
math_output = gr.Textbox(
|
260 |
+
label="Step-by-Step Solution",
|
261 |
+
lines=15,
|
262 |
+
max_lines=20
|
263 |
+
)
|
264 |
+
|
265 |
+
solve_btn.click(
|
266 |
+
fn=assistant.tutor_mode_cot,
|
267 |
+
inputs=[math_input],
|
268 |
+
outputs=[math_output]
|
269 |
+
)
|
270 |
+
|
271 |
+
# Assistant Mode Tab
|
272 |
+
with gr.Tab("๐ Assistant Mode"):
|
273 |
+
gr.HTML("<h3>Document Q&A with Retrieval-Augmented Generation</h3>")
|
274 |
+
gr.HTML("<p><b>Step 1:</b> Upload PDF documents, then <b>Step 2:</b> ask questions about them.</p>")
|
275 |
+
|
276 |
+
with gr.Row():
|
277 |
+
with gr.Column():
|
278 |
+
# PDF Upload Section
|
279 |
+
gr.HTML("<h4>๐ค Upload Documents</h4>")
|
280 |
+
pdf_upload = gr.File(
|
281 |
+
label="Upload PDF Documents",
|
282 |
+
file_types=[".pdf"],
|
283 |
+
file_count="multiple"
|
284 |
+
)
|
285 |
+
upload_status = gr.Textbox(
|
286 |
+
label="Upload Status",
|
287 |
+
lines=3,
|
288 |
+
interactive=False,
|
289 |
+
placeholder="Upload status will appear here..."
|
290 |
+
)
|
291 |
+
|
292 |
+
# Question Section
|
293 |
+
gr.HTML("<h4>โ Ask Questions</h4>")
|
294 |
+
question_input = gr.Textbox(
|
295 |
+
label="Your Question",
|
296 |
+
placeholder="What is the main topic discussed in the document?\nCan you summarize chapter 2?\nWhat are the key findings?",
|
297 |
+
lines=4
|
298 |
+
)
|
299 |
+
ask_btn = gr.Button("๐ฌ Ask Question", variant="primary")
|
300 |
+
|
301 |
+
with gr.Column():
|
302 |
+
answer_output = gr.Textbox(
|
303 |
+
label="Answer from Documents",
|
304 |
+
lines=15,
|
305 |
+
max_lines=25,
|
306 |
+
placeholder="Answers will appear here..."
|
307 |
+
)
|
308 |
+
|
309 |
+
# Handle file upload
|
310 |
+
pdf_upload.change(
|
311 |
+
fn=assistant.process_uploaded_pdfs,
|
312 |
+
inputs=[pdf_upload],
|
313 |
+
outputs=[upload_status]
|
314 |
+
)
|
315 |
+
|
316 |
+
# Handle question
|
317 |
+
ask_btn.click(
|
318 |
+
fn=assistant.assistant_mode_rag,
|
319 |
+
inputs=[question_input],
|
320 |
+
outputs=[answer_output]
|
321 |
+
)
|
322 |
+
|
323 |
+
# Footer with setup instructions
|
324 |
+
|
325 |
+
|
326 |
+
|
327 |
+
return demo
|
328 |
+
|
329 |
+
if __name__ == "__main__":
|
330 |
+
# Create .env file template if it doesn't exist
|
331 |
+
if not os.path.exists(".env"):
|
332 |
+
with open(".env", "w") as f:
|
333 |
+
f.write("# Add your Groq API key here\n")
|
334 |
+
f.write("GROQ_API_KEY=your_groq_api_key_here\n")
|
335 |
+
print("๐ Created .env file. Please add your GROQ_API_KEY.")
|
336 |
+
|
337 |
+
# Check if API key exists
|
338 |
+
if not os.getenv("GROQ_API_KEY"):
|
339 |
+
print("โ ๏ธ Warning: GROQ_API_KEY not found. Please add it to your .env file.")
|
340 |
+
|
341 |
+
# Launch the app
|
342 |
+
demo = create_interface()
|
343 |
+
demo.launch(debug=True, share=True)
|