qdrant / app.py
Hargurjeet's picture
Update app.py
e7eda29
from langchain.vectorstores import Qdrant
from langchain.embeddings.openai import OpenAIEmbeddings
import qdrant_client
import os
from langchain.embeddings.huggingface import HuggingFaceInstructEmbeddings
from langchain.llms import HuggingFaceHub
from dotenv import load_dotenv
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
import streamlit as st
def get_vector_store():
client = qdrant_client.QdrantClient(
os.getenv('QDRANT_HOST'),
api_key=os.getenv('QDRANT_API_KEY')
)
embeddings = HuggingFaceInstructEmbeddings(model_name = "hkunlp/instructor-xl")
# embeddings = OpenAIEmbeddings()
vectore_store = Qdrant(
client=client,
collection_name=os.getenv('QDRANT_COLLECTION_NAME'),
embeddings=embeddings,
)
return vectore_store
def main():
load_dotenv()
st.set_page_config(page_title="Ask AI", page_icon=":robot:")
st.header("Ask your remote database")
vectorstore = get_vector_store()
#create chain
qa = RetrievalQA.from_chain_type(
# llm=OpenAI(temperature=0),
llm=HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.7, "max_length":512}),
chain_type="stuff",
retriever=vectorstore.as_retriever(search_type="similarity")
)
user_question = st.text_input("Ask your question")
if user_question:
st.write(f"Question: {user_question}")
answer = qa.run(user_question)
st.write(f"Answer: {answer}")
if __name__ == "__main__":
main()