Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
# ==============================================================================
|
| 2 |
-
#
|
| 3 |
# ==============================================================================
|
| 4 |
import os
|
| 5 |
import subprocess
|
|
@@ -25,7 +25,7 @@ if 'PACKAGES_INSTALLED' not in os.environ:
|
|
| 25 |
os.environ['PACKAGES_INSTALLED'] = 'TRUE'
|
| 26 |
|
| 27 |
# ==============================================================================
|
| 28 |
-
#
|
| 29 |
# ==============================================================================
|
| 30 |
import gradio as gr
|
| 31 |
from transformers import pipeline as text_pipeline
|
|
@@ -34,7 +34,6 @@ import torch
|
|
| 34 |
import re
|
| 35 |
from fpdf import FPDF
|
| 36 |
from PIL import Image
|
| 37 |
-
import io
|
| 38 |
import time
|
| 39 |
from datasets import Dataset, Features, Value, Sequence, Image as HFImage
|
| 40 |
from gradio_client import Client
|
|
@@ -44,7 +43,7 @@ import numpy as np
|
|
| 44 |
from moviepy.editor import ImageClip, concatenate_videoclips, AudioFileClip, CompositeAudioClip
|
| 45 |
from speechbrain.pretrained import EncoderClassifier
|
| 46 |
|
| 47 |
-
# --- Konfiguracja
|
| 48 |
LLM_MODEL = "HuggingFaceH4/zephyr-7b-beta"
|
| 49 |
IMAGE_MODEL = "stabilityai/stable-diffusion-2-1-base"
|
| 50 |
TTS_MODEL = "microsoft/speecht5_tts"
|
|
@@ -52,53 +51,46 @@ VOCODER_MODEL = "microsoft/speecht5_hifigan"
|
|
| 52 |
SPEAKER_EMBEDDING_MODEL = "speechbrain/spkrec-xvect-voxceleb"
|
| 53 |
DATASET_PATH = "saved_courses"
|
| 54 |
TEXT_TO_3D_MODEL_SPACE = "stabilityai/TripoSR"
|
| 55 |
-
|
| 56 |
-
# --- 艁adowanie Modeli i Klient贸w ---
|
| 57 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
try:
|
| 64 |
-
print("艁adowanie modelu obrazkowego...")
|
| 65 |
-
image_generator = DiffusionPipeline.from_pretrained(IMAGE_MODEL)
|
| 66 |
-
image_generator.to(device)
|
| 67 |
-
IMAGE_MODEL_LOADED = True
|
| 68 |
-
print("Model obrazkowy za艂adowany.")
|
| 69 |
-
except Exception as e:
|
| 70 |
-
print(f"B艂膮d 艂adowania Image Model: {e}"); image_generator = None; IMAGE_MODEL_LOADED = False
|
| 71 |
-
|
| 72 |
-
try:
|
| 73 |
-
print("Inicjalizacja klienta 3D..."); client_3d = Client(TEXT_TO_3D_MODEL_SPACE); CLIENT_3D_LOADED = True; print("Klient 3D gotowy.")
|
| 74 |
-
except Exception as e: print(f"B艂膮d inicjalizacji klienta 3D: {e}"); client_3d = None; CLIENT_3D_LOADED = False
|
| 75 |
-
|
| 76 |
-
try:
|
| 77 |
-
print("艁adowanie modeli TTS...")
|
| 78 |
-
tts_processor = SpeechT5Processor.from_pretrained(TTS_MODEL)
|
| 79 |
-
tts_model = SpeechT5ForTextToSpeech.from_pretrained(TTS_MODEL).to(device)
|
| 80 |
-
vocoder = SpeechT5HifiGan.from_pretrained(VOCODER_MODEL).to(device)
|
| 81 |
-
spk_model_source = SPEAKER_EMBEDDING_MODEL
|
| 82 |
-
speaker_model = EncoderClassifier.from_hparams(source=spk_model_source, savedir=os.path.join('/tmp', spk_model_source))
|
| 83 |
-
dummy_waveform = torch.randn(1, 16000).to(device)
|
| 84 |
-
speaker_embeddings = speaker_model.encode_batch(dummy_waveform).squeeze().to(device)
|
| 85 |
-
TTS_LOADED = True
|
| 86 |
-
print("Modele TTS za艂adowane.")
|
| 87 |
-
except Exception as e:
|
| 88 |
-
print(f"B艂膮d 艂adowania modeli TTS: {e}"); TTS_LOADED = False
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
# --- Funkcje Aplikacji ---
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
def list_saved_projects():
|
| 94 |
-
if not os.path.exists(DATASET_PATH):
|
| 95 |
-
return []
|
| 96 |
try:
|
| 97 |
dataset = Dataset.load_from_disk(DATASET_PATH)
|
| 98 |
return dataset["project_name"]
|
| 99 |
except Exception as e:
|
| 100 |
-
print(f"B艂膮d odczytu
|
| 101 |
-
return []
|
| 102 |
|
| 103 |
def parse_course_to_structure(markdown_text):
|
| 104 |
course_data = {'title': "Nowy Kurs", 'steps': []}
|
|
@@ -112,10 +104,11 @@ def parse_course_to_structure(markdown_text):
|
|
| 112 |
|
| 113 |
def generate_course_structure_and_images(topic, progress=gr.Progress(track_tqdm=True)):
|
| 114 |
if not LLM_LOADED or not IMAGE_MODEL_LOADED:
|
|
|
|
| 115 |
return [None, gr.State([])] + [gr.update(visible=False)]*2 + [gr.update(interactive=False)]*3 + [gr.update()]*11
|
| 116 |
|
| 117 |
progress(0, desc="Generowanie tekstu kursu...")
|
| 118 |
-
prompt = f"<|system|>\nJeste艣 ekspertem w tworzeniu kurs贸w online
|
| 119 |
response = text_generator(prompt, max_new_tokens=1024, do_sample=True, temperature=0.7, top_p=0.95)
|
| 120 |
course_text = response[0]['generated_text'].split('<|assistant|>')[-1].strip()
|
| 121 |
course_data = parse_course_to_structure(course_text)
|
|
@@ -134,10 +127,11 @@ def generate_course_structure_and_images(topic, progress=gr.Progress(track_tqdm=
|
|
| 134 |
if i < len(course_data['steps']):
|
| 135 |
updates.extend([gr.update(value=course_data['steps'][i]['title']), gr.update(value=course_data['steps'][i]['description'])])
|
| 136 |
else:
|
| 137 |
-
updates.extend([
|
| 138 |
|
| 139 |
return generated_images, gr.State(generated_images), gr.update(visible=True), gr.update(visible=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), *updates
|
| 140 |
|
|
|
|
| 141 |
def load_project(project_name):
|
| 142 |
if not project_name:
|
| 143 |
gr.Warning("Wybierz projekt do wczytania.")
|
|
@@ -154,7 +148,7 @@ def load_project(project_name):
|
|
| 154 |
step = project_data['steps'][i]
|
| 155 |
updates.extend([gr.update(value=step['title']), gr.update(value=step['description'])])
|
| 156 |
else:
|
| 157 |
-
updates.extend([
|
| 158 |
|
| 159 |
return loaded_images, gr.State(loaded_images), gr.update(visible=True), gr.update(visible=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), *updates
|
| 160 |
|
|
@@ -288,16 +282,7 @@ def generate_pdf_from_ui(images_state, course_title, *args):
|
|
| 288 |
return pdf_output_path
|
| 289 |
|
| 290 |
# --- Budowa Interfejsu Gradio ---
|
| 291 |
-
custom_css = ""
|
| 292 |
-
body, #root { height: 100vh; margin: 0; padding: 0; }
|
| 293 |
-
.gradio-container { max-width: 100% !important; }
|
| 294 |
-
.main, .wrap { height: 100%; }
|
| 295 |
-
.gap { height: 100%; }
|
| 296 |
-
.app-title { text-align: center; font-size: 2.5em; color: #2c3e50; font-weight: bold; margin-bottom: 0px !important; }
|
| 297 |
-
.app-subtitle { text-align: center; font-size: 1.1em; color: #576574; margin-top: 5px; margin-bottom: 20px; }
|
| 298 |
-
.section-title { font-size: 1.5em; font-weight: bold; color: #2980b9; border-bottom: 2px solid #3498db; padding-bottom: 5px; margin-top: 10px; }
|
| 299 |
-
footer { display: none !important; }
|
| 300 |
-
"""
|
| 301 |
|
| 302 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="sky", secondary_hue="blue"), title="Kreator Kurs贸w AI", css=custom_css) as demo:
|
| 303 |
|
|
@@ -408,5 +393,8 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="sky", secondary_hue="blue"), ti
|
|
| 408 |
inputs=[images_state] + editor_text_fields,
|
| 409 |
outputs=[video_output]
|
| 410 |
)
|
| 411 |
-
|
| 412 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# ==============================================================================
|
| 2 |
+
# Wymuszona instalacja bibliotek
|
| 3 |
# ==============================================================================
|
| 4 |
import os
|
| 5 |
import subprocess
|
|
|
|
| 25 |
os.environ['PACKAGES_INSTALLED'] = 'TRUE'
|
| 26 |
|
| 27 |
# ==============================================================================
|
| 28 |
+
# G艂贸wny kod aplikacji
|
| 29 |
# ==============================================================================
|
| 30 |
import gradio as gr
|
| 31 |
from transformers import pipeline as text_pipeline
|
|
|
|
| 34 |
import re
|
| 35 |
from fpdf import FPDF
|
| 36 |
from PIL import Image
|
|
|
|
| 37 |
import time
|
| 38 |
from datasets import Dataset, Features, Value, Sequence, Image as HFImage
|
| 39 |
from gradio_client import Client
|
|
|
|
| 43 |
from moviepy.editor import ImageClip, concatenate_videoclips, AudioFileClip, CompositeAudioClip
|
| 44 |
from speechbrain.pretrained import EncoderClassifier
|
| 45 |
|
| 46 |
+
# --- Konfiguracja ---
|
| 47 |
LLM_MODEL = "HuggingFaceH4/zephyr-7b-beta"
|
| 48 |
IMAGE_MODEL = "stabilityai/stable-diffusion-2-1-base"
|
| 49 |
TTS_MODEL = "microsoft/speecht5_tts"
|
|
|
|
| 51 |
SPEAKER_EMBEDDING_MODEL = "speechbrain/spkrec-xvect-voxceleb"
|
| 52 |
DATASET_PATH = "saved_courses"
|
| 53 |
TEXT_TO_3D_MODEL_SPACE = "stabilityai/TripoSR"
|
|
|
|
|
|
|
| 54 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 55 |
|
| 56 |
+
# --- Globalne zmienne dla modeli ---
|
| 57 |
+
text_generator, image_generator, client_3d, tts_processor, tts_model, vocoder, speaker_embeddings = (None,) * 7
|
| 58 |
+
LLM_LOADED, IMAGE_MODEL_LOADED, CLIENT_3D_LOADED, TTS_LOADED = (False,) * 4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
+
# --- Funkcje 艂adowania modeli ---
|
| 61 |
+
def load_models():
|
| 62 |
+
global text_generator, image_generator, client_3d, tts_processor, tts_model, vocoder, speaker_embeddings
|
| 63 |
+
global LLM_LOADED, IMAGE_MODEL_LOADED, CLIENT_3D_LOADED, TTS_LOADED
|
| 64 |
+
|
| 65 |
+
try:
|
| 66 |
+
print("艁adowanie modelu j臋zykowego..."); text_generator = text_pipeline("text-generation", model=LLM_MODEL, torch_dtype=torch.bfloat16, device_map="auto"); LLM_LOADED = True; print("Model j臋zykowy za艂adowany.")
|
| 67 |
+
except Exception as e: print(f"B艂膮d 艂adowania LLM: {e}")
|
| 68 |
+
try:
|
| 69 |
+
print("艁adowanie modelu obrazkowego..."); image_generator = DiffusionPipeline.from_pretrained(IMAGE_MODEL); image_generator.to(device); IMAGE_MODEL_LOADED = True; print("Model obrazkowy za艂adowany.")
|
| 70 |
+
except Exception as e: print(f"B艂膮d 艂adowania Image Model: {e}")
|
| 71 |
+
try:
|
| 72 |
+
print("Inicjalizacja klienta 3D..."); client_3d = Client(TEXT_TO_3D_MODEL_SPACE); CLIENT_3D_LOADED = True; print("Klient 3D gotowy.")
|
| 73 |
+
except Exception as e: print(f"B艂膮d inicjalizacji klienta 3D: {e}")
|
| 74 |
+
try:
|
| 75 |
+
print("艁adowanie modeli TTS...")
|
| 76 |
+
tts_processor = SpeechT5Processor.from_pretrained(TTS_MODEL)
|
| 77 |
+
tts_model = SpeechT5ForTextToSpeech.from_pretrained(TTS_MODEL).to(device)
|
| 78 |
+
vocoder = SpeechT5HifiGan.from_pretrained(VOCODER_MODEL).to(device)
|
| 79 |
+
speaker_model = EncoderClassifier.from_hparams(source=SPEAKER_EMBEDDING_MODEL, savedir=os.path.join('/tmp', SPEAKER_EMBEDDING_MODEL))
|
| 80 |
+
dummy_waveform = torch.randn(1, 16000).to(device)
|
| 81 |
+
speaker_embeddings = speaker_model.encode_batch(dummy_waveform).squeeze().to(device)
|
| 82 |
+
TTS_LOADED = True
|
| 83 |
+
print("Modele TTS za艂adowane.")
|
| 84 |
+
except Exception as e: print(f"B艂膮d 艂adowania modeli TTS: {e}")
|
| 85 |
+
|
| 86 |
+
# --- Funkcje pomocnicze i g艂贸wne ---
|
| 87 |
def list_saved_projects():
|
| 88 |
+
if not os.path.exists(DATASET_PATH): return []
|
|
|
|
| 89 |
try:
|
| 90 |
dataset = Dataset.load_from_disk(DATASET_PATH)
|
| 91 |
return dataset["project_name"]
|
| 92 |
except Exception as e:
|
| 93 |
+
print(f"B艂膮d odczytu projekt贸w: {e}"); return []
|
|
|
|
| 94 |
|
| 95 |
def parse_course_to_structure(markdown_text):
|
| 96 |
course_data = {'title': "Nowy Kurs", 'steps': []}
|
|
|
|
| 104 |
|
| 105 |
def generate_course_structure_and_images(topic, progress=gr.Progress(track_tqdm=True)):
|
| 106 |
if not LLM_LOADED or not IMAGE_MODEL_LOADED:
|
| 107 |
+
gr.Error("Kluczowe modele AI nie zosta艂y za艂adowane. Sprawd藕 logi.")
|
| 108 |
return [None, gr.State([])] + [gr.update(visible=False)]*2 + [gr.update(interactive=False)]*3 + [gr.update()]*11
|
| 109 |
|
| 110 |
progress(0, desc="Generowanie tekstu kursu...")
|
| 111 |
+
prompt = f"<|system|>\nJeste艣 ekspertem w tworzeniu kurs贸w online...</s>\n<|user|>\nTemat kursu: \"{topic}\"</s>\n<|assistant|>"
|
| 112 |
response = text_generator(prompt, max_new_tokens=1024, do_sample=True, temperature=0.7, top_p=0.95)
|
| 113 |
course_text = response[0]['generated_text'].split('<|assistant|>')[-1].strip()
|
| 114 |
course_data = parse_course_to_structure(course_text)
|
|
|
|
| 127 |
if i < len(course_data['steps']):
|
| 128 |
updates.extend([gr.update(value=course_data['steps'][i]['title']), gr.update(value=course_data['steps'][i]['description'])])
|
| 129 |
else:
|
| 130 |
+
updates.extend(["", ""])
|
| 131 |
|
| 132 |
return generated_images, gr.State(generated_images), gr.update(visible=True), gr.update(visible=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), *updates
|
| 133 |
|
| 134 |
+
# ... (pozosta艂e funkcje: load_project, update_preview, move_step, etc. bez zmian) ...
|
| 135 |
def load_project(project_name):
|
| 136 |
if not project_name:
|
| 137 |
gr.Warning("Wybierz projekt do wczytania.")
|
|
|
|
| 148 |
step = project_data['steps'][i]
|
| 149 |
updates.extend([gr.update(value=step['title']), gr.update(value=step['description'])])
|
| 150 |
else:
|
| 151 |
+
updates.extend(["", ""])
|
| 152 |
|
| 153 |
return loaded_images, gr.State(loaded_images), gr.update(visible=True), gr.update(visible=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), *updates
|
| 154 |
|
|
|
|
| 282 |
return pdf_output_path
|
| 283 |
|
| 284 |
# --- Budowa Interfejsu Gradio ---
|
| 285 |
+
custom_css = "body, #root { height: 100vh; margin: 0; padding: 0; } .gradio-container { max-width: 100% !important; } .main, .wrap, .gap { height: 100%; } .app-title { text-align: center; font-size: 2.5em; color: #2c3e50; font-weight: bold; margin-bottom: 0px !important; } .app-subtitle { text-align: center; font-size: 1.1em; color: #576574; margin-top: 5px; margin-bottom: 20px; } .section-title { font-size: 1.5em; font-weight: bold; color: #2980b9; border-bottom: 2px solid #3498db; padding-bottom: 5px; margin-top: 10px; } footer { display: none !important; }"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
|
| 287 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="sky", secondary_hue="blue"), title="Kreator Kurs贸w AI", css=custom_css) as demo:
|
| 288 |
|
|
|
|
| 393 |
inputs=[images_state] + editor_text_fields,
|
| 394 |
outputs=[video_output]
|
| 395 |
)
|
| 396 |
+
|
| 397 |
+
# Uruchomienie aplikacji po za艂adowaniu modeli
|
| 398 |
+
demo.queue().launch(show_api=False)
|
| 399 |
+
# Wywo艂anie funkcji 艂aduj膮cej modele po zdefiniowaniu interfejsu
|
| 400 |
+
load_models()
|