ovsam / app /models /sam_mask_decoder.py
Haobo Yuan
Add model
9cc3eb2
from typing import Literal, Tuple, List
import torch
import torch.nn.functional as F
from mmdet.structures import SampleList
from mmengine import MMLogger
from mmengine.model import BaseModule
from mmdet.registry import MODELS
from ext.sam import MaskDecoder
from ext.meta.sam_meta import meta_dict, checkpoint_dict
from utils.load_checkpoint import load_checkpoint_with_prefix
@MODELS.register_module()
class SAMMaskDecoder(BaseModule):
def __init__(
self,
model_name: Literal['vit_h', 'vit_l', 'vit_b'] = 'vit_h',
fix: bool = True,
init_cfg=None,
):
assert init_cfg is not None and \
init_cfg['type'] in ['sam_pretrain', 'Pretrained'], f"{init_cfg['type']} is not supported."
pretrained = init_cfg['checkpoint']
super().__init__(init_cfg=None)
self.init_cfg = init_cfg
self.logger = MMLogger.get_current_instance()
mask_decoder = MaskDecoder(
num_multimask_outputs=3,
transformer_dim=meta_dict[model_name]['prompt_embed_dim'],
iou_head_depth=3,
iou_head_hidden_dim=256,
)
if self.init_cfg['type'] == 'sam_pretrain':
checkpoint_path = checkpoint_dict[pretrained]
state_dict = load_checkpoint_with_prefix(checkpoint_path, prefix='mask_decoder')
mask_decoder.load_state_dict(state_dict, strict=True)
self.mask_decoder = mask_decoder
if self.init_cfg['type'] == 'Pretrained':
checkpoint_path = pretrained
state_dict = load_checkpoint_with_prefix(checkpoint_path, prefix=self.init_cfg['prefix'])
self.load_state_dict(state_dict, strict=True)
self.fix = fix
if self.fix:
self.train(mode=False)
for name, param in self.named_parameters():
param.requires_grad = False
def init_weights(self):
self.logger.info(f"Init Config for {self.__class__.__name__}")
self.logger.info(self.init_cfg)
def forward_logit(self, cls_embd):
cls_pred = torch.einsum('bnc,ckp->bnkp', F.normalize(cls_embd, dim=-1), self.cls_embed)
cls_pred = cls_pred.max(-1).values
cls_pred = self.logit_scale.exp() * cls_pred
return cls_pred
def predict_masks(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Predicts masks. See 'forward' for more details."""
num_instances = int(sparse_prompt_embeddings.shape[0])
# Concatenate output tokens
output_tokens = torch.cat([self.mask_decoder.iou_token.weight, self.mask_decoder.mask_tokens.weight], dim=0)
output_tokens = output_tokens.unsqueeze(0).expand(num_instances, -1, -1)
queries = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
# image_embeddings = torch.repeat_interleave(image_embeddings, num_instances, dim=0)
image_embeddings = image_embeddings + dense_prompt_embeddings
pos_img = torch.repeat_interleave(image_pe, num_instances, dim=0)
b, c, h, w = image_embeddings.shape
# Run the transformer
queries, mask_feats = self.mask_decoder.transformer(image_embeddings, pos_img, queries)
iou_query = queries[:, 0, :]
mask_embeds = queries[:, 1:(1 + self.mask_decoder.num_mask_tokens), :]
# Upscale mask embeddings and predict masks using the mask tokens
mask_feats = mask_feats.transpose(1, 2).view(b, c, h, w)
mask_feats = self.mask_decoder.output_upscaling(mask_feats)
mask_queries_list: List[torch.Tensor] = []
for i in range(self.mask_decoder.num_mask_tokens):
mask_queries_list.append(self.mask_decoder.output_hypernetworks_mlps[i](mask_embeds[:, i, :]))
mask_queries = torch.stack(mask_queries_list, dim=1)
b, c, h, w = mask_feats.shape
masks = (mask_queries @ mask_feats.view(b, c, h * w)).view(b, -1, h, w)
# Generate mask quality predictions
iou_pred = self.mask_decoder.iou_prediction_head(iou_query)
return masks, iou_pred, None
def forward(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
multi_mask_output: bool,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
num_prompts = len(sparse_prompt_embeddings)
image_embeddings = torch.repeat_interleave(image_embeddings, num_prompts, dim=0)
masks, iou_pred, cls_pred = self.predict_masks(
image_embeddings=image_embeddings,
image_pe=image_pe,
sparse_prompt_embeddings=sparse_prompt_embeddings,
dense_prompt_embeddings=dense_prompt_embeddings,
)
# Select the correct mask or masks for output
if multi_mask_output:
mask_slice = slice(1, None)
else:
mask_slice = slice(0, 1)
masks = masks[:, mask_slice, :, :]
iou_pred = iou_pred[:, mask_slice]
# Prepare output
return masks, iou_pred, cls_pred
def forward_train(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
batch_ind_list: List[int],
data_samples: SampleList,
):
raise NotImplementedError