Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
!pip install transformers torch gradio pillow --quiet
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
from transformers import pipeline
|
| 5 |
+
|
| 6 |
+
pipe = pipeline("image-text-to-text", model="google/medgemma-4b-it")
|
| 7 |
+
|
| 8 |
+
messages = [
|
| 9 |
+
{
|
| 10 |
+
"role": "user",
|
| 11 |
+
"content": [
|
| 12 |
+
{"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/p-blog/candy.JPG"},
|
| 13 |
+
{"type": "text", "text": "What animal is on the candy?"}
|
| 14 |
+
]
|
| 15 |
+
},
|
| 16 |
+
]
|
| 17 |
+
|
| 18 |
+
result = pipe(text=messages)
|
| 19 |
+
print(result[0]["generated_text"])
|
| 20 |
+
|
| 21 |
+
# 建立 Gradio UI
|
| 22 |
+
iface = gr.Interface(
|
| 23 |
+
fn=predict,
|
| 24 |
+
inputs=["text", "text"], # image_url, question
|
| 25 |
+
outputs="text",
|
| 26 |
+
title="MedGemma Demo",
|
| 27 |
+
description="Input an image URL and a question to get MedGemma's answer."
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
iface.launch()
|