Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,328 +1,55 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import gc
|
| 3 |
-
import torch
|
| 4 |
from transformers import pipeline
|
| 5 |
import gradio as gr
|
| 6 |
from PIL import Image
|
| 7 |
import requests
|
| 8 |
from io import BytesIO
|
| 9 |
-
import psutil
|
| 10 |
-
from datetime import datetime
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
|
| 14 |
-
os.environ["HF_HOME"] = "/tmp/hf_home"
|
| 15 |
-
os.environ["TORCH_HOME"] = "/tmp/torch_cache"
|
| 16 |
-
|
| 17 |
-
def clear_memory():
|
| 18 |
-
"""清理記憶體和快取"""
|
| 19 |
-
gc.collect()
|
| 20 |
-
if torch.cuda.is_available():
|
| 21 |
-
torch.cuda.empty_cache()
|
| 22 |
-
|
| 23 |
-
def check_storage():
|
| 24 |
-
"""檢查存儲空間"""
|
| 25 |
-
try:
|
| 26 |
-
disk_usage = psutil.disk_usage('/')
|
| 27 |
-
free_gb = disk_usage.free / (1024**3)
|
| 28 |
-
used_percent = (disk_usage.used / disk_usage.total) * 100
|
| 29 |
-
return free_gb, used_percent
|
| 30 |
-
except:
|
| 31 |
-
return 0, 100
|
| 32 |
-
|
| 33 |
-
def load_medgemma_model():
|
| 34 |
-
"""載入 MedGemma 模型,使用優化設定"""
|
| 35 |
-
try:
|
| 36 |
-
print("🏥 正在載入 MedGemma-4B 模型...")
|
| 37 |
-
print(f"⏰ 載入時間: {datetime.now().strftime('%H:%M:%S')}")
|
| 38 |
-
|
| 39 |
-
# 檢查存儲空間
|
| 40 |
-
free_gb, used_percent = check_storage()
|
| 41 |
-
print(f"💾 可用空間: {free_gb:.1f}GB, 使用率: {used_percent:.1f}%")
|
| 42 |
-
|
| 43 |
-
if free_gb < 5: # 如果可用空間少於5GB
|
| 44 |
-
raise Exception(f"存儲空間不足 ({free_gb:.1f}GB),建議至少需要 5GB")
|
| 45 |
-
|
| 46 |
-
# 使用優化設定載入模型
|
| 47 |
-
pipe = pipeline(
|
| 48 |
-
"image-to-text",
|
| 49 |
-
model="google/medgemma-4b-it",
|
| 50 |
-
torch_dtype=torch.float16, # 使用半精度節省記憶體
|
| 51 |
-
device_map="auto",
|
| 52 |
-
low_cpu_mem_usage=True,
|
| 53 |
-
cache_dir="/tmp/transformers_cache"
|
| 54 |
-
)
|
| 55 |
-
|
| 56 |
-
print("✅ MedGemma-4B 模型載入成功!")
|
| 57 |
-
return pipe, "google/medgemma-4b-it"
|
| 58 |
-
|
| 59 |
-
except Exception as e:
|
| 60 |
-
print(f"❌ MedGemma 載入失敗: {e}")
|
| 61 |
-
print("🔄 嘗試載入較小的替代模型...")
|
| 62 |
-
|
| 63 |
-
try:
|
| 64 |
-
# 載入較小的醫療相關模型作為替代
|
| 65 |
-
pipe = pipeline(
|
| 66 |
-
"image-to-text",
|
| 67 |
-
model="Salesforce/blip-image-captioning-base",
|
| 68 |
-
cache_dir="/tmp/transformers_cache"
|
| 69 |
-
)
|
| 70 |
-
print("✅ 已載入 BLIP 模型作為替代")
|
| 71 |
-
return pipe, "Salesforce/blip-image-captioning-base"
|
| 72 |
-
except Exception as e2:
|
| 73 |
-
raise Exception(f"所有模型載入失敗: MedGemma({e}), BLIP({e2})")
|
| 74 |
|
|
|
|
| 75 |
def load_image_from_input(image_input):
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
else:
|
| 92 |
-
# 檔案路徑
|
| 93 |
-
return Image.open(image_input)
|
| 94 |
-
else:
|
| 95 |
-
return Image.open(image_input)
|
| 96 |
-
|
| 97 |
-
except Exception as e:
|
| 98 |
-
raise Exception(f"無法載入圖片: {e}")
|
| 99 |
-
|
| 100 |
-
def predict(image_input, question, url_input):
|
| 101 |
-
"""主要預測函數"""
|
| 102 |
-
try:
|
| 103 |
-
# 確定圖片來源(優先使用上傳的圖片)
|
| 104 |
-
if image_input is not None:
|
| 105 |
-
image_source = image_input
|
| 106 |
-
source_type = "上傳檔案"
|
| 107 |
-
elif url_input and url_input.strip():
|
| 108 |
-
image_source = url_input.strip()
|
| 109 |
-
source_type = "URL"
|
| 110 |
-
else:
|
| 111 |
-
return "❌ 請上傳圖片或輸入圖片 URL"
|
| 112 |
-
|
| 113 |
-
print(f"📷 處理圖片來源: {source_type}")
|
| 114 |
-
|
| 115 |
-
# 載入圖片
|
| 116 |
-
image = load_image_from_input(image_source)
|
| 117 |
-
|
| 118 |
-
# 圖片預處理
|
| 119 |
-
original_size = image.size
|
| 120 |
-
if image.mode != 'RGB':
|
| 121 |
-
image = image.convert('RGB')
|
| 122 |
-
print(f"🔄 轉換圖片格式: {image.mode}")
|
| 123 |
-
|
| 124 |
-
# 調整圖片大小以節省記憶體(保持品質)
|
| 125 |
-
max_size = 768 # MedGemma 建議大小
|
| 126 |
-
if max(image.size) > max_size:
|
| 127 |
-
ratio = max_size / max(image.size)
|
| 128 |
-
new_size = tuple(int(dim * ratio) for dim in image.size)
|
| 129 |
-
image = image.resize(new_size, Image.Resampling.LANCZOS)
|
| 130 |
-
print(f"📐 調整圖片大小: {original_size} → {image.size}")
|
| 131 |
-
|
| 132 |
-
# 處理問題輸入
|
| 133 |
-
if not question or not question.strip():
|
| 134 |
-
question = "請詳細分析這張醫療影像,描述你看��的重要特徵、可能的病理變化,以及任何需要注意的異常。"
|
| 135 |
-
|
| 136 |
-
question = question.strip()
|
| 137 |
-
print(f"❓ 醫療問題: {question[:100]}...")
|
| 138 |
-
|
| 139 |
-
# 根據模型類型選擇輸入格式
|
| 140 |
-
global model_name
|
| 141 |
-
if "medgemma" in model_name.lower():
|
| 142 |
-
# MedGemma 使用對話格式
|
| 143 |
-
messages = [
|
| 144 |
-
{
|
| 145 |
-
"role": "user",
|
| 146 |
-
"content": [
|
| 147 |
-
{"type": "image", "image": image},
|
| 148 |
-
{"type": "text", "text": question}
|
| 149 |
-
]
|
| 150 |
-
}
|
| 151 |
-
]
|
| 152 |
-
print("🔬 使用 MedGemma 專業醫療分析模式")
|
| 153 |
-
result = pipe(messages)
|
| 154 |
-
else:
|
| 155 |
-
# 其他模型直接使用圖片
|
| 156 |
-
print("🔍 使用通用圖片描述模式")
|
| 157 |
-
result = pipe(image)
|
| 158 |
-
|
| 159 |
-
# 清理記憶體
|
| 160 |
-
clear_memory()
|
| 161 |
-
|
| 162 |
-
# 解析結果
|
| 163 |
-
if isinstance(result, list) and len(result) > 0:
|
| 164 |
-
if isinstance(result[0], dict):
|
| 165 |
-
generated_text = result[0].get('generated_text', str(result[0]))
|
| 166 |
-
else:
|
| 167 |
-
generated_text = str(result[0])
|
| 168 |
-
else:
|
| 169 |
-
generated_text = str(result)
|
| 170 |
-
|
| 171 |
-
# 添加分析資訊
|
| 172 |
-
analysis_info = f"""
|
| 173 |
-
🏥 **醫療影像分析結果**
|
| 174 |
-
|
| 175 |
-
📊 **圖片資訊:**
|
| 176 |
-
- 原始尺寸: {original_size}
|
| 177 |
-
- 處理尺寸: {image.size}
|
| 178 |
-
- 來源: {source_type}
|
| 179 |
-
|
| 180 |
-
🤖 **使用模型:** {model_name}
|
| 181 |
-
|
| 182 |
-
🔬 **分析結果:**
|
| 183 |
-
{generated_text}
|
| 184 |
-
|
| 185 |
-
---
|
| 186 |
-
⚠️ **重要提醒:** 此分析僅供參考,不能替代專業醫療診斷。如有疑慮請諮詢專業醫師。
|
| 187 |
-
"""
|
| 188 |
-
|
| 189 |
-
return analysis_info
|
| 190 |
-
|
| 191 |
-
except Exception as e:
|
| 192 |
-
clear_memory()
|
| 193 |
-
error_msg = f"❌ 處理錯誤: {str(e)}"
|
| 194 |
-
print(error_msg)
|
| 195 |
-
return error_msg
|
| 196 |
-
|
| 197 |
-
# 載入模型
|
| 198 |
-
try:
|
| 199 |
-
pipe, model_name = load_medgemma_model()
|
| 200 |
-
model_status = f"✅ {model_name} 已準備就緒"
|
| 201 |
-
except Exception as e:
|
| 202 |
-
model_status = f"❌ 模型載入失敗: {e}"
|
| 203 |
-
pipe = None
|
| 204 |
-
model_name = "未載入"
|
| 205 |
-
|
| 206 |
-
# 創建 Gradio 介面
|
| 207 |
-
def create_interface():
|
| 208 |
-
with gr.Blocks(
|
| 209 |
-
title="MedGemma 醫療影像分析系統",
|
| 210 |
-
theme=gr.themes.Soft(),
|
| 211 |
-
css=".gradio-container {max-width: 1200px; margin: auto;}"
|
| 212 |
-
) as demo:
|
| 213 |
-
|
| 214 |
-
gr.Markdown(f"""
|
| 215 |
-
# 🏥 MedGemma 醫療影像分析系統
|
| 216 |
-
|
| 217 |
-
**模型狀態:** {model_status}
|
| 218 |
-
**更新時間:** {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}
|
| 219 |
-
|
| 220 |
-
上傳醫療影像(JPG/PNG)或輸入圖片 URL,獲得專業的 AI 醫療影像分析。
|
| 221 |
-
""")
|
| 222 |
-
|
| 223 |
-
with gr.Row():
|
| 224 |
-
with gr.Column(scale=1):
|
| 225 |
-
# 圖片上傳
|
| 226 |
-
image_input = gr.Image(
|
| 227 |
-
label="📤 上傳醫療影像",
|
| 228 |
-
type="pil",
|
| 229 |
-
file_types=["jpg", "jpeg", "png"],
|
| 230 |
-
height=300
|
| 231 |
-
)
|
| 232 |
-
|
| 233 |
-
# URL 輸入
|
| 234 |
-
url_input = gr.Textbox(
|
| 235 |
-
label="🔗 或輸入圖片 URL",
|
| 236 |
-
placeholder="https://example.com/medical-image.jpg",
|
| 237 |
-
lines=1
|
| 238 |
-
)
|
| 239 |
-
|
| 240 |
-
# 問題輸入
|
| 241 |
-
question_input = gr.Textbox(
|
| 242 |
-
label="❓ 醫療問題或分析要求",
|
| 243 |
-
placeholder="請分析這張X光片中的異常...",
|
| 244 |
-
lines=3,
|
| 245 |
-
value="請詳細分析這張醫療影像,包括任何可見的異常或重要特徵。"
|
| 246 |
-
)
|
| 247 |
-
|
| 248 |
-
# 分析按鈕
|
| 249 |
-
analyze_btn = gr.Button(
|
| 250 |
-
"🔬 開始分析",
|
| 251 |
-
variant="primary",
|
| 252 |
-
size="lg"
|
| 253 |
-
)
|
| 254 |
-
|
| 255 |
-
# 清理按鈕
|
| 256 |
-
clear_btn = gr.Button("🧹 清理", variant="secondary")
|
| 257 |
-
|
| 258 |
-
with gr.Column(scale=2):
|
| 259 |
-
# 分析結果
|
| 260 |
-
output = gr.Textbox(
|
| 261 |
-
label="📋 分析結果",
|
| 262 |
-
lines=20,
|
| 263 |
-
interactive=False,
|
| 264 |
-
show_copy_button=True
|
| 265 |
-
)
|
| 266 |
-
|
| 267 |
-
# 使用說明
|
| 268 |
-
with gr.Accordion("📖 使用說明", open=False):
|
| 269 |
-
gr.Markdown("""
|
| 270 |
-
### 如何使用:
|
| 271 |
-
1. **上傳圖片**: 點擊上傳區域選擇 JPG/PNG 醫療影像
|
| 272 |
-
2. **或使用 URL**: 在 URL 欄位貼上圖片連結
|
| 273 |
-
3. **輸入問題**: 描述你想了解的醫療問題
|
| 274 |
-
4. **開始分析**: 點擊分析按鈕獲得結果
|
| 275 |
-
|
| 276 |
-
### 支援的影像類型:
|
| 277 |
-
- X光片 (X-ray)
|
| 278 |
-
- CT 掃描 (CT Scan)
|
| 279 |
-
- MRI 影像 (MRI)
|
| 280 |
-
- 超音波影像 (Ultrasound)
|
| 281 |
-
- 病理切片 (Pathology)
|
| 282 |
-
|
| 283 |
-
### 重要提醒:
|
| 284 |
-
⚠️ 此 AI 分析僅供參考學習,不可作為醫療診斷依據
|
| 285 |
-
⚠️ 如有健康疑慮,請務必諮詢專業醫師
|
| 286 |
-
""")
|
| 287 |
-
|
| 288 |
-
# 事件綁定
|
| 289 |
-
analyze_btn.click(
|
| 290 |
-
fn=predict,
|
| 291 |
-
inputs=[image_input, question_input, url_input],
|
| 292 |
-
outputs=output
|
| 293 |
-
)
|
| 294 |
-
|
| 295 |
-
clear_btn.click(
|
| 296 |
-
fn=lambda: ("", "", ""),
|
| 297 |
-
outputs=[image_input, url_input, output]
|
| 298 |
-
)
|
| 299 |
-
|
| 300 |
-
# 圖片上傳時自動分析
|
| 301 |
-
image_input.change(
|
| 302 |
-
fn=lambda img, q, url: predict(img, q, url) if img is not None else "",
|
| 303 |
-
inputs=[image_input, question_input, url_input],
|
| 304 |
-
outputs=output
|
| 305 |
-
)
|
| 306 |
-
|
| 307 |
-
return demo
|
| 308 |
-
|
| 309 |
-
# 啟動應用
|
| 310 |
-
if __name__ == "__main__":
|
| 311 |
-
if pipe is None:
|
| 312 |
-
print("❌ 無法啟動:模型載入失敗")
|
| 313 |
-
exit(1)
|
| 314 |
-
|
| 315 |
-
print("🚀 啟動 MedGemma 醫療影像分析系統...")
|
| 316 |
-
|
| 317 |
-
# 檢查最終狀態
|
| 318 |
-
free_gb, used_percent = check_storage()
|
| 319 |
-
print(f"💾 當前存儲狀態: {free_gb:.1f}GB 可用, {used_percent:.1f}% 已使用")
|
| 320 |
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from transformers import pipeline
|
| 2 |
import gradio as gr
|
| 3 |
from PIL import Image
|
| 4 |
import requests
|
| 5 |
from io import BytesIO
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
# 建立 pipeline
|
| 8 |
+
pipe = pipeline("image-to-text", model="google/medgemma-4b-it")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
# 修正:支援 JPG 檔案上傳
|
| 11 |
def load_image_from_input(image_input):
|
| 12 |
+
# URL 情況
|
| 13 |
+
if isinstance(image_input, str) and (image_input.startswith("http://") or image_input.startswith("https://")):
|
| 14 |
+
try:
|
| 15 |
+
response = requests.get(image_input)
|
| 16 |
+
img = Image.open(BytesIO(response.content))
|
| 17 |
+
return img
|
| 18 |
+
except Exception as e:
|
| 19 |
+
raise gr.Error(f"無法從 URL 下載圖片: {e}")
|
| 20 |
+
else:
|
| 21 |
+
# JPG 檔案上傳情況 - 這裡就是關鍵修正
|
| 22 |
+
return Image.open(image_input)
|
| 23 |
+
|
| 24 |
+
# 包裝成 API 函數
|
| 25 |
+
def predict(image_input, question):
|
| 26 |
+
image = load_image_from_input(image_input)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
# 將輸入轉換為模型所需的 messages 格式
|
| 29 |
+
messages = [
|
| 30 |
+
{
|
| 31 |
+
"role": "user",
|
| 32 |
+
"content": [
|
| 33 |
+
{"type": "image", "image": image}, # 修正:改為 "image"
|
| 34 |
+
{"type": "text", "text": question}
|
| 35 |
+
]
|
| 36 |
+
},
|
| 37 |
+
]
|
| 38 |
+
result = pipe(messages)
|
| 39 |
+
return result[0]["generated_text"]
|
| 40 |
+
|
| 41 |
+
# Gradio 介面
|
| 42 |
+
iface = gr.Interface(
|
| 43 |
+
fn=predict,
|
| 44 |
+
inputs=[
|
| 45 |
+
gr.Image(type="filepath", file_types=[".jpg", ".jpeg", ".png"]), # 修正:加上檔案類型限制
|
| 46 |
+
"text"
|
| 47 |
+
],
|
| 48 |
+
outputs="text",
|
| 49 |
+
title="MedGemma API + Demo",
|
| 50 |
+
description="上傳 JPG 圖片或輸入圖片 URL,以 API 或 UI 測試 MedGemma。"
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
# 啟動應用程式
|
| 54 |
+
if __name__ == "__main__": # 修正:語法錯誤
|
| 55 |
+
iface.launch()
|