HangenYuu commited on
Commit
e351916
·
1 Parent(s): cb60d26

Updated app.py

Browse files
Files changed (2) hide show
  1. Screenshot 2023-05-05 085533.png +0 -0
  2. app.py +39 -3
Screenshot 2023-05-05 085533.png ADDED
app.py CHANGED
@@ -1,7 +1,43 @@
1
  import gradio as gr
 
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
5
 
6
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  iface.launch()
 
1
  import gradio as gr
2
+ import requests
3
+ from PIL import Image
4
+ from io import BytesIO
5
 
6
+ url = 'http://146.190.200.87:8000/predict'
 
7
 
8
+ def inference(input_image):
9
+ # Convert the PIL image to bytes
10
+ img_bytes = BytesIO()
11
+ input_image.save(img_bytes, format='JPEG')
12
+
13
+ # Send the POST request with the image data as 'image' key
14
+ files = {'image': ('input.jpg', img_bytes.getvalue(), 'image/jpeg')}
15
+ response = requests.post(url, files=files)
16
+
17
+ # Check if the request was successful (status code 200)
18
+ if response.status_code == 200:
19
+ # Assuming the response is in JSON format, extract the category and probability information
20
+ result = response.json()
21
+ # Assuming the response contains category: probability pairs
22
+ # Sort the results by probability in descending order and take the top 5
23
+ sorted_results = sorted(result.items(), key=lambda x: x[1], reverse=True)[:5]
24
+ return sorted_results
25
+ else:
26
+ print("POST request failed with status code:", response.status_code)
27
+ return None
28
+
29
+ title = "SeeFood102"
30
+ description = "Gradio frontend for SeeFood102, the expansion edition of SeeFood101."
31
+
32
+ examples = [
33
+ [Image.open('Screenshot 2023-05-05 085533.png')]
34
+ ]
35
+
36
+ iface = gr.Interface(fn=inference,
37
+ inputs=gr.Image(type="pil"),
38
+ outputs=gr.Label(num_top_classes=5),
39
+ title=title,
40
+ description=description,
41
+ examples=examples,
42
+ analytics_enabled=False)
43
  iface.launch()