Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import torch | |
import numpy as np | |
from scipy.io import savemat, loadmat | |
from yacs.config import CfgNode as CN | |
from scipy.signal import savgol_filter | |
import safetensors | |
import safetensors.torch | |
from src.audio2pose_models.audio2pose import Audio2Pose | |
from src.audio2exp_models.networks import SimpleWrapperV2 | |
from src.audio2exp_models.audio2exp import Audio2Exp | |
from src.utils.safetensor_helper import load_x_from_safetensor | |
def load_cpk(checkpoint_path, model=None, optimizer=None, device="cpu"): | |
checkpoint = torch.load(checkpoint_path, map_location=torch.device(device)) | |
if model is not None: | |
model.load_state_dict(checkpoint['model']) | |
if optimizer is not None: | |
optimizer.load_state_dict(checkpoint['optimizer']) | |
return checkpoint['epoch'] | |
class Audio2Coeff(): | |
def __init__(self, sadtalker_path, device): | |
#load config | |
fcfg_pose = open(sadtalker_path['audio2pose_yaml_path']) | |
cfg_pose = CN.load_cfg(fcfg_pose) | |
cfg_pose.freeze() | |
fcfg_exp = open(sadtalker_path['audio2exp_yaml_path']) | |
cfg_exp = CN.load_cfg(fcfg_exp) | |
cfg_exp.freeze() | |
# load audio2pose_model | |
self.audio2pose_model = Audio2Pose(cfg_pose, None, device=device) | |
self.audio2pose_model = self.audio2pose_model.to(device) | |
self.audio2pose_model.eval() | |
for param in self.audio2pose_model.parameters(): | |
param.requires_grad = False | |
try: | |
if sadtalker_path['use_safetensor']: | |
checkpoints = safetensors.torch.load_file(sadtalker_path['checkpoint']) | |
self.audio2pose_model.load_state_dict(load_x_from_safetensor(checkpoints, 'audio2pose')) | |
else: | |
load_cpk(sadtalker_path['audio2pose_checkpoint'], model=self.audio2pose_model, device=device) | |
except: | |
raise Exception("Failed in loading audio2pose_checkpoint") | |
# load audio2exp_model | |
netG = SimpleWrapperV2() | |
netG = netG.to(device) | |
for param in netG.parameters(): | |
netG.requires_grad = False | |
netG.eval() | |
try: | |
if sadtalker_path['use_safetensor']: | |
checkpoints = safetensors.torch.load_file(sadtalker_path['checkpoint']) | |
netG.load_state_dict(load_x_from_safetensor(checkpoints, 'audio2exp')) | |
else: | |
load_cpk(sadtalker_path['audio2exp_checkpoint'], model=netG, device=device) | |
except: | |
raise Exception("Failed in loading audio2exp_checkpoint") | |
self.audio2exp_model = Audio2Exp(netG, cfg_exp, device=device, prepare_training_loss=False) | |
self.audio2exp_model = self.audio2exp_model.to(device) | |
for param in self.audio2exp_model.parameters(): | |
param.requires_grad = False | |
self.audio2exp_model.eval() | |
self.device = device | |
def generate(self, batch, coeff_save_dir, pose_style, ref_pose_coeff_path=None): | |
with torch.no_grad(): | |
#test | |
results_dict_exp= self.audio2exp_model.test(batch) | |
exp_pred = results_dict_exp['exp_coeff_pred'] #bs T 64 | |
#for class_id in range(1): | |
#class_id = 0#(i+10)%45 | |
#class_id = random.randint(0,46) #46 styles can be selected | |
batch['class'] = torch.LongTensor([pose_style]).to(self.device) | |
results_dict_pose = self.audio2pose_model.test(batch) | |
pose_pred = results_dict_pose['pose_pred'] #bs T 6 | |
pose_len = pose_pred.shape[1] | |
if pose_len<13: | |
pose_len = int((pose_len-1)/2)*2+1 | |
pose_pred = torch.Tensor(savgol_filter(np.array(pose_pred.cpu()), pose_len, 2, axis=1)).to(self.device) | |
else: | |
pose_pred = torch.Tensor(savgol_filter(np.array(pose_pred.cpu()), 13, 2, axis=1)).to(self.device) | |
coeffs_pred = torch.cat((exp_pred, pose_pred), dim=-1) #bs T 70 | |
coeffs_pred_numpy = coeffs_pred[0].clone().detach().cpu().numpy() | |
if ref_pose_coeff_path is not None: | |
coeffs_pred_numpy = self.using_refpose(coeffs_pred_numpy, ref_pose_coeff_path) | |
savemat(os.path.join(coeff_save_dir, '%s##%s.mat'%(batch['pic_name'], batch['audio_name'])), | |
{'coeff_3dmm': coeffs_pred_numpy}) | |
return os.path.join(coeff_save_dir, '%s##%s.mat'%(batch['pic_name'], batch['audio_name'])) | |
def using_refpose(self, coeffs_pred_numpy, ref_pose_coeff_path): | |
num_frames = coeffs_pred_numpy.shape[0] | |
refpose_coeff_dict = loadmat(ref_pose_coeff_path) | |
refpose_coeff = refpose_coeff_dict['coeff_3dmm'][:,64:70] | |
refpose_num_frames = refpose_coeff.shape[0] | |
if refpose_num_frames<num_frames: | |
div = num_frames//refpose_num_frames | |
re = num_frames%refpose_num_frames | |
refpose_coeff_list = [refpose_coeff for i in range(div)] | |
refpose_coeff_list.append(refpose_coeff[:re, :]) | |
refpose_coeff = np.concatenate(refpose_coeff_list, axis=0) | |
#### relative head pose | |
coeffs_pred_numpy[:, 64:70] = coeffs_pred_numpy[:, 64:70] + ( refpose_coeff[:num_frames, :] - refpose_coeff[0:1, :] ) | |
return coeffs_pred_numpy | |