Hamza011's picture
Update app.py
b70ea9a verified
raw
history blame
858 Bytes
import tensorflow as tf
import gradio as gr
import cv2
import os
used_model = tf.keras.layers.TFSMLayer(os.path.dirname('/model'), call_endpoint='serving_default')
new_classes = ['blight', 'common_rust', 'gray_leaf_spot','healthy']
def classify_image(img_dt):
img_dt = cv2.resize(img_dt,(256,256))
img_dt = img_dt.reshape((-1,256,256,3))
prediction = used_model.predict(img_dt).flatten()
confidences = {new_classes[i]: float(prediction[i]) for i in range (4) }
return confidences
with gr.Blocks() as demo:
with gr.Row():
signal = gr.Markdown(''' #Welcome to Maize Classifier, This model can identify if a leaf is
**HEALTHY**, has **COMMON RUST**, **BLIGHT** or **GRAY LEAF SPOT**''')
inp = gr.image()
out = gr.Label()
inp.upload(fn= classify_image, inputs = inp, outputs = out, show_progrss = True)