Spaces:
Sleeping
Sleeping
import os | |
import streamlit as st | |
import tensorflow as tf | |
import numpy as np | |
from huggingface_hub import HfApi, hf_hub_download | |
from PIL import Image | |
from io import BytesIO | |
import requests | |
# Hugging Face credentials | |
api = HfApi() | |
# Set your Hugging Face username and model repository name | |
username = "Hammad712" | |
repo_name = "CycleGAN-Model" | |
repo_id = f"{username}/{repo_name}" | |
# Download model files from Hugging Face | |
local_dir = "CycleGAN" # Changed to a relative path | |
os.makedirs(local_dir, exist_ok=True) | |
for file in api.list_repo_files(repo_id=repo_id, repo_type="model"): | |
hf_hub_download(repo_id=repo_id, filename=file, local_dir=local_dir) | |
# Load the model | |
custom_objects = {'InstanceNormalization': tf.keras.layers.Layer} # Adjust custom objects as needed | |
loaded_model = tf.keras.models.load_model(local_dir, custom_objects=custom_objects) | |
# Helper functions | |
def load_and_preprocess_image(image): | |
img = image.resize((256, 256)) | |
img = np.array(img) | |
img = (img - 127.5) / 127.5 # Normalize to [-1, 1] | |
img = np.expand_dims(img, axis=0) # Add batch dimension | |
return img | |
def infer_image(model, image): | |
preprocessed_img = load_and_preprocess_image(image) | |
generated_img = model(preprocessed_img, training=False) | |
generated_img = tf.squeeze(generated_img, axis=0) # Remove batch dimension | |
generated_img = (generated_img * 127.5 + 127.5).numpy().astype(np.uint8) # De-normalize to [0, 255] | |
return generated_img | |
def load_image_from_url(url): | |
response = requests.get(url) | |
img = Image.open(BytesIO(response.content)) | |
return img | |
# Custom CSS | |
combined_css = """ | |
.main, .sidebar .sidebar-content { background-color: #1c1c1c; color: #f0f2f6; } | |
.block-container { padding: 1rem 2rem; background-color: #333; border-radius: 10px; box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.5); } | |
.stButton>button, .stDownloadButton>button { background: linear-gradient(135deg, #ff7e5f, #feb47b); color: white; border: none; padding: 10px 24px; text-align: center; text-decoration: none; display: inline-block; font-size: 16px; margin: 4px 2px; cursor: pointer; border-radius: 5px; } | |
.stSpinner { color: #4CAF50; } | |
.title { | |
font-size: 3rem; | |
font-weight: bold; | |
display: flex; | |
align-items: center; | |
justify-content: center; | |
} | |
.colorful-text { | |
background: -webkit-linear-gradient(135deg, #ff7e5f, #feb47b); | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
} | |
.black-white-text { | |
color: black; | |
} | |
.small-input .stTextInput>div>input { | |
height: 2rem; | |
font-size: 0.9rem; | |
} | |
.small-file-uploader .stFileUploader>div>div { | |
height: 2rem; | |
font-size: 0.9rem; | |
} | |
.custom-text { | |
font-size: 1.2rem; | |
color: #feb47b; | |
text-align: center; | |
margin-top: -20px; | |
margin-bottom: 20px; | |
} | |
""" | |
# Streamlit application | |
st.set_page_config(layout="wide") | |
st.markdown(f"<style>{combined_css}</style>", unsafe_allow_html=True) | |
st.markdown('<div class="title"><span class="colorful-text">Photo</span> <span class="black-white-text">to Van Gogh</span></div>', unsafe_allow_html=True) | |
st.markdown('<div class="custom-text">Convert photos to Van Gogh style using AI</div>', unsafe_allow_html=True) | |
# Streamlit UI | |
uploaded_file = st.file_uploader("Choose an image...", type="jpg") | |
image_url = st.text_input("Or enter an image URL:") | |
image = None | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file) | |
elif image_url: | |
try: | |
image = load_image_from_url(image_url) | |
except Exception as e: | |
st.error(f"Failed to load image from URL: {e}") | |
if image is not None: | |
if st.button("Run Inference"): | |
# Perform inference | |
with st.spinner('Processing...'): | |
generated_image = infer_image(loaded_model, image) | |
# Display the original and generated images side by side | |
st.markdown("### Result") | |
col1, col2 = st.columns(2) | |
with col1: | |
st.image(image, caption='Original Image', use_column_width=True) | |
with col2: | |
st.image(generated_image, caption='Generated Image', use_column_width=True) | |
# Provide a download button for the generated image | |
img_byte_arr = BytesIO() | |
Image.fromarray(generated_image).save(img_byte_arr, format='JPEG') | |
img_byte_arr = img_byte_arr.getvalue() | |
st.download_button( | |
label="Download Generated Image", | |
data=img_byte_arr, | |
file_name="generated_image.jpg", | |
mime="image/jpeg" | |
) | |
st.success("Image processed successfully!") | |