Upload 3 files
Browse files- .gitattributes +1 -0
- depression_audio_model1.keras +3 -0
- main.py +75 -0
- requirements.txt +5 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
depression_audio_model1.keras filter=lfs diff=lfs merge=lfs -text
|
depression_audio_model1.keras
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ca9cc124fa7d6d0ca747f170db61331020c0b0844b7bf296413ad56065b7edb
|
3 |
+
size 36825812
|
main.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, UploadFile, HTTPException
|
2 |
+
from fastapi.responses import JSONResponse
|
3 |
+
import tensorflow as tf
|
4 |
+
import librosa
|
5 |
+
import numpy as np
|
6 |
+
import uvicorn
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Load the pre-trained model
|
10 |
+
loaded_model = tf.keras.models.load_model('depression_audio_model1.keras')
|
11 |
+
print("Model loaded successfully.")
|
12 |
+
|
13 |
+
# Constants
|
14 |
+
N_MELS = 128
|
15 |
+
N_FFT = 2048
|
16 |
+
HOP_LENGTH = 512
|
17 |
+
DURATION = 10
|
18 |
+
SAMPLE_RATE = 22050
|
19 |
+
FIXED_SHAPE = (N_MELS, int(DURATION * SAMPLE_RATE / HOP_LENGTH))
|
20 |
+
|
21 |
+
# Create the FastAPI app
|
22 |
+
app = FastAPI()
|
23 |
+
|
24 |
+
def extract_mel_spectrogram(file_path, n_mels=N_MELS, n_fft=N_FFT, hop_length=HOP_LENGTH, duration=DURATION, sample_rate=SAMPLE_RATE):
|
25 |
+
signal, _ = librosa.load(file_path, sr=sample_rate, duration=duration)
|
26 |
+
mel_spectrogram = librosa.feature.melspectrogram(y=signal, sr=sample_rate, n_mels=n_mels, n_fft=n_fft, hop_length=hop_length)
|
27 |
+
mel_spectrogram_db = librosa.power_to_db(mel_spectrogram, ref=np.max)
|
28 |
+
mean = mel_spectrogram_db.mean()
|
29 |
+
std = mel_spectrogram_db.std()
|
30 |
+
if std > 0:
|
31 |
+
mel_spectrogram_db = (mel_spectrogram_db - mean) / std
|
32 |
+
else:
|
33 |
+
mel_spectrogram_db = mel_spectrogram_db - mean
|
34 |
+
|
35 |
+
if mel_spectrogram_db.shape[1] < FIXED_SHAPE[1]:
|
36 |
+
pad_width = FIXED_SHAPE[1] - mel_spectrogram_db.shape[1]
|
37 |
+
mel_spectrogram_db = np.pad(mel_spectrogram_db, ((0, 0), (0, pad_width)), mode='constant')
|
38 |
+
else:
|
39 |
+
mel_spectrogram_db = mel_spectrogram_db[:, :FIXED_SHAPE[1]]
|
40 |
+
return mel_spectrogram_db
|
41 |
+
|
42 |
+
def inference(file_path):
|
43 |
+
mel_spectrogram_db = extract_mel_spectrogram(file_path)
|
44 |
+
mel_spectrogram_db = mel_spectrogram_db.reshape(1, *mel_spectrogram_db.shape) # Add batch dimension
|
45 |
+
prediction = loaded_model.predict(mel_spectrogram_db)
|
46 |
+
predicted_label = np.argmax(prediction, axis=-1)
|
47 |
+
|
48 |
+
return int(predicted_label[0])
|
49 |
+
|
50 |
+
@app.post("/predict")
|
51 |
+
async def predict(file: UploadFile):
|
52 |
+
try:
|
53 |
+
# Check file type
|
54 |
+
if not file.filename.endswith(('.wav', '.mp3')):
|
55 |
+
raise HTTPException(status_code=400, detail="Invalid file type. Please upload an audio file.")
|
56 |
+
|
57 |
+
# Save uploaded file to a temporary location
|
58 |
+
temp_file_path = f"temp_{file.filename}"
|
59 |
+
with open(temp_file_path, "wb") as temp_file:
|
60 |
+
temp_file.write(await file.read())
|
61 |
+
|
62 |
+
# Perform inference
|
63 |
+
predicted_label = inference(temp_file_path)
|
64 |
+
|
65 |
+
# Remove temporary file
|
66 |
+
os.remove(temp_file_path)
|
67 |
+
|
68 |
+
return JSONResponse(content={"prediction": predicted_label})
|
69 |
+
|
70 |
+
except Exception as e:
|
71 |
+
raise HTTPException(status_code=500, detail=f"Error during prediction: {str(e)}")
|
72 |
+
|
73 |
+
# Run the application if the script is executed directly
|
74 |
+
if __name__ == "__main__":
|
75 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn
|
3 |
+
tensorflow
|
4 |
+
librosa
|
5 |
+
numpy
|