Spaces:
Sleeping
Sleeping
import streamlit as st | |
from fastai.vision import open_image, load_learner, show_image | |
import PIL.Image | |
from PIL import Image | |
from io import BytesIO | |
import requests | |
import torch.nn as nn | |
import os | |
import tempfile | |
import shutil | |
# Define the FeatureLoss class | |
class FeatureLoss(nn.Module): | |
def __init__(self, m_feat, layer_ids, layer_wgts): | |
super().__init__() | |
self.m_feat = m_feat | |
self.loss_features = [self.m_feat[i] for i in layer_ids] | |
self.hooks = hook_outputs(self.loss_features, detach=False) | |
self.wgts = layer_wgts | |
self.metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids))] + [f'gram_{i}' for i in range(len(layer_ids))] | |
def make_features(self, x, clone=False): | |
self.m_feat(x) | |
return [(o.clone() if clone else o) for o in self.hooks.stored] | |
def forward(self, input, target): | |
out_feat = self.make_features(target, clone=True) | |
in_feat = self.make_features(input) | |
self.feat_losses = [base_loss(input, target)] | |
self.feat_losses += [base_loss(f_in, f_out) * w for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)] | |
self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out)) * w**2 * 5e3 for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)] | |
self.metrics = dict(zip(self.metric_names, self.feat_losses)) | |
return sum(self.feat_losses) | |
def __del__(self): self.hooks.remove() | |
def add_margin(pil_img, top, right, bottom, left, color): | |
width, height = pil_img.size | |
new_width = width + right + left | |
new_height = height + top + bottom | |
result = Image.new(pil_img.mode, (new_width, new_height), color) | |
result.paste(pil_img, (left, top)) | |
return result | |
def inference(image_path_or_url, learn): | |
if image_path_or_url.startswith('http://') or image_path_or_url.startswith('https://'): | |
response = requests.get(image_path_or_url) | |
img = PIL.Image.open(BytesIO(response.content)).convert("RGB") | |
else: | |
img = PIL.Image.open(image_path_or_url).convert("RGB") | |
im_new = add_margin(img, 250, 250, 250, 250, (255, 255, 255)) | |
im_new.save("test.jpg", quality=95) | |
img = open_image("test.jpg") | |
p, img_hr, b = learn.predict(img) | |
return img_hr | |
# Streamlit application | |
st.title("Image Inference with Fastai") | |
# Download the model file from the Hugging Face repository | |
model_url = "https://huggingface.co/Hammad712/image2sketch/resolve/main/image2sketch.pkl" | |
model_file_path = 'image2sketch.pkl' | |
if not os.path.exists(model_file_path): | |
with st.spinner('Downloading model...'): | |
response = requests.get(model_url) | |
with open(model_file_path, 'wb') as f: | |
f.write(response.content) | |
st.success('Model downloaded successfully!') | |
# Create a temporary directory for the model | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
shutil.move(model_file_path, os.path.join(tmpdirname, 'export.pkl')) | |
learn = load_learner(tmpdirname) | |
# Input for image URL or path | |
image_path_or_url = st.text_input("Enter image path or URL", "") | |
# Run inference button | |
if st.button("Run Inference"): | |
if image_path_or_url: | |
with st.spinner('Processing...'): | |
high_res_image = inference(image_path_or_url, learn) | |
st.image(high_res_image, caption='High Resolution Image', use_column_width=True) | |
else: | |
st.error("Please enter a valid image path or URL.") | |