Spaces:
No application file
No application file
HalteroXHunter
commited on
Commit
•
56bd5b5
1
Parent(s):
053b2da
add new module
Browse files- absa_evaluator.py +166 -0
absa_evaluator.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List
|
2 |
+
|
3 |
+
import evaluate
|
4 |
+
from datasets import Features, Sequence, Value
|
5 |
+
from sklearn.metrics import accuracy_score
|
6 |
+
|
7 |
+
from research_eval.utils.preprocessing import absa_term_preprocess
|
8 |
+
|
9 |
+
_CITATION = """
|
10 |
+
"""
|
11 |
+
|
12 |
+
_DESCRIPTION = """
|
13 |
+
Evaluation metrics for Aspect-Based Sentiment Analysis (ABSA) including precision, recall, and F1 score for aspect terms and polarities.
|
14 |
+
"""
|
15 |
+
|
16 |
+
_KWARGS_DESCRIPTION = """
|
17 |
+
Computes precision, recall, and F1 score for aspect terms and polarities in Aspect-Based Sentiment Analysis (ABSA).
|
18 |
+
|
19 |
+
Args:
|
20 |
+
predictions: List of ABSA predictions with the following structure:
|
21 |
+
- 'aspects': Sequence of aspect annotations, each with the following keys:
|
22 |
+
- 'term': Aspect term
|
23 |
+
- 'polarity': Polarity of the aspect term
|
24 |
+
references: List of ABSA references with the same structure as predictions.
|
25 |
+
Returns:
|
26 |
+
aspect_precision: Precision score for aspect terms
|
27 |
+
aspect_recall: Recall score for aspect terms
|
28 |
+
aspect_f1: F1 score for aspect terms
|
29 |
+
polarity_precision: Precision score for aspect polarities
|
30 |
+
polarity_recall: Recall score for aspect polarities
|
31 |
+
polarity_f1: F1 score for aspect polarities
|
32 |
+
"""
|
33 |
+
|
34 |
+
|
35 |
+
class AbsaEvaluatorTest(evaluate.Metric):
|
36 |
+
def _info(self):
|
37 |
+
return evaluate.MetricInfo(
|
38 |
+
description=_DESCRIPTION,
|
39 |
+
citation=_CITATION,
|
40 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
41 |
+
features=Features(
|
42 |
+
{
|
43 |
+
"predictions": Features(
|
44 |
+
{
|
45 |
+
"aspects": Features(
|
46 |
+
{
|
47 |
+
"term": Sequence(Value("string")),
|
48 |
+
"polarity": Sequence(Value("string")),
|
49 |
+
}
|
50 |
+
),
|
51 |
+
"category": Features(
|
52 |
+
{
|
53 |
+
"category": Sequence(Value("string")),
|
54 |
+
"polarity": Sequence(Value("string")),
|
55 |
+
}
|
56 |
+
),
|
57 |
+
}
|
58 |
+
),
|
59 |
+
"references": Features(
|
60 |
+
{
|
61 |
+
"aspects": Features(
|
62 |
+
{
|
63 |
+
"term": Sequence(Value("string")),
|
64 |
+
"polarity": Sequence(Value("string")),
|
65 |
+
}
|
66 |
+
),
|
67 |
+
"category": Features(
|
68 |
+
{
|
69 |
+
"category": Sequence(Value("string")),
|
70 |
+
"polarity": Sequence(Value("string")),
|
71 |
+
}
|
72 |
+
),
|
73 |
+
}
|
74 |
+
),
|
75 |
+
}
|
76 |
+
),
|
77 |
+
)
|
78 |
+
|
79 |
+
def _compute(self, predictions, references):
|
80 |
+
# preprocess aspect term
|
81 |
+
(
|
82 |
+
truth_aspect_terms,
|
83 |
+
pred_aspect_terms,
|
84 |
+
truth_term_polarities,
|
85 |
+
pred_term_polarities,
|
86 |
+
) = absa_term_preprocess(
|
87 |
+
references=references,
|
88 |
+
predictions=predictions,
|
89 |
+
subtask_key="aspects",
|
90 |
+
subtask_value="term",
|
91 |
+
)
|
92 |
+
# evaluate
|
93 |
+
term_results = self.semeval_metric(
|
94 |
+
truth_aspect_terms, pred_aspect_terms
|
95 |
+
)
|
96 |
+
term_polarity_acc = accuracy_score(
|
97 |
+
truth_term_polarities, pred_term_polarities
|
98 |
+
)
|
99 |
+
|
100 |
+
# preprocess category detection
|
101 |
+
(
|
102 |
+
truth_categories,
|
103 |
+
pred_categories,
|
104 |
+
truth_cat_polarities,
|
105 |
+
pred_cat_polarities,
|
106 |
+
) = absa_term_preprocess(
|
107 |
+
references=references,
|
108 |
+
predictions=predictions,
|
109 |
+
subtask_key="category",
|
110 |
+
subtask_value="category",
|
111 |
+
)
|
112 |
+
|
113 |
+
# evaluate
|
114 |
+
category_results = self.semeval_metric(
|
115 |
+
truth_categories, pred_categories
|
116 |
+
)
|
117 |
+
cat_polarity_acc = accuracy_score(
|
118 |
+
truth_cat_polarities, pred_cat_polarities
|
119 |
+
)
|
120 |
+
|
121 |
+
return {
|
122 |
+
"term_extraction_results": term_results,
|
123 |
+
"term_polarity_results_accuracy": term_polarity_acc,
|
124 |
+
"category_detection_results": category_results,
|
125 |
+
"category_polarity_results_accuracy": cat_polarity_acc,
|
126 |
+
}
|
127 |
+
|
128 |
+
def semeval_metric(
|
129 |
+
self, truths: List[List[str]], preds: List[List[str]]
|
130 |
+
) -> Dict[str, float]:
|
131 |
+
"""
|
132 |
+
Implements evaluation for extraction tasks using precision, recall, and F1 score.
|
133 |
+
|
134 |
+
Parameters:
|
135 |
+
- truths: List of lists, where each list contains the ground truth labels for a sample.
|
136 |
+
- preds: List of lists, where each list contains the predicted labels for a sample.
|
137 |
+
|
138 |
+
Returns:
|
139 |
+
- A dictionary containing the precision, recall, F1 score, and counts of common, retrieved, and relevant.
|
140 |
+
|
141 |
+
link for code: link for this code: https://github.com/davidsbatista/Aspect-Based-Sentiment-Analysis/blob/1d9c8ec1131993d924e96676fa212db6b53cb870/libraries/baselines.py#L387
|
142 |
+
"""
|
143 |
+
b = 1
|
144 |
+
common, relevant, retrieved = 0.0, 0.0, 0.0
|
145 |
+
for truth, pred in zip(truths, preds):
|
146 |
+
common += len([a for a in pred if a in truth])
|
147 |
+
retrieved += len(pred)
|
148 |
+
relevant += len(truth)
|
149 |
+
precision = common / retrieved if retrieved > 0 else 0.0
|
150 |
+
recall = common / relevant if relevant > 0 else 0.0
|
151 |
+
f1 = (
|
152 |
+
(1 + (b**2))
|
153 |
+
* precision
|
154 |
+
* recall
|
155 |
+
/ ((precision * b**2) + recall)
|
156 |
+
if precision > 0 and recall > 0
|
157 |
+
else 0.0
|
158 |
+
)
|
159 |
+
return {
|
160 |
+
"precision": precision,
|
161 |
+
"recall": recall,
|
162 |
+
"f1_score": f1,
|
163 |
+
"common": common,
|
164 |
+
"retrieved": retrieved,
|
165 |
+
"relevant": relevant,
|
166 |
+
}
|