Spaces:
Runtime error
Runtime error
from fengshen.data.task_dataloader.task_datasets import LCSTSDataModel | |
from transformers import T5Tokenizer, MT5ForConditionalGeneration | |
from transformers.optimization import get_linear_schedule_with_warmup | |
from pytorch_lightning import Trainer, loggers | |
from pytorch_lightning.callbacks import ModelCheckpoint | |
from transformers import AutoTokenizer | |
import pytorch_lightning as pl | |
import json | |
import argparse | |
import torch | |
import os | |
import sys | |
sys.path.append('./') | |
# os.environ["CUDA_VISIBLE_DEVICES"] = '4,5,6,7' | |
def test(): | |
tokenizer = T5Tokenizer.from_pretrained("google/mt5-small") | |
article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien." | |
summary = "Weiter Verhandlung in Syrien." | |
article = "日前,方舟子发文直指林志颖旗下爱碧丽推销假保健品,引起哗然。调查发现,爱碧丽没有自己的生产加工厂。 \ | |
其胶原蛋白饮品无核心研发,全部代工生产。号称有“逆生长”功效的爱碧丽“梦幻奇迹限量组”售价>高达1080元,实际成本仅为每瓶4元!" | |
summary = "林志颖公司疑涉虚假营销无厂房无研发" | |
inputs = tokenizer(article, rturn_tensors="pt") | |
tt = tokenizer.encode_plus(summary, max_length=64, | |
padding='max_length', truncation='longest_first') | |
print('tt:', tt) | |
print('inputs:', inputs) | |
with tokenizer.as_target_tokenizer(): | |
labels = tokenizer(summary, return_tensors="pt") | |
print('labels:', labels) | |
print('origin labels:', tokenizer.decode(labels['input_ids'][0])) | |
model = MT5ForConditionalGeneration.from_pretrained("google/mt5-small") | |
# outputs = model(input_ids=inputs["input_ids"], labels=labels["input_ids"]) | |
# print(outputs.keys()) | |
# evaluation | |
model.eval() | |
generated_ids = model.generate( | |
input_ids=inputs['input_ids'], | |
attention_mask=inputs['attention_mask'], | |
max_length=150, | |
num_beams=2, | |
repetition_penalty=2.5, | |
length_penalty=1.0, | |
early_stopping=True | |
) | |
preds = [tokenizer.decode(g, skip_special_tokens=True, | |
clean_up_tokenization_spaces=True) for g in generated_ids] | |
print(preds) | |
class MT5FinetuneSummaryModelCheckpoint: | |
def add_argparse_args(parent_args): | |
parser = parent_args.add_argument_group('BaseModel') | |
parser.add_argument('--monitor', default='train_loss', type=str) | |
parser.add_argument('--mode', default='min', type=str) | |
parser.add_argument('--dirpath', default='./ckpt/', type=str) | |
parser.add_argument( | |
'--filename', default='model-{epoch:02d}-{train_loss:.4f}', type=str) | |
parser.add_argument('--save_last', action='store_true', default=True) | |
parser.add_argument('--save_top_k', default=3, type=float) | |
parser.add_argument('--every_n_train_steps', default=100, type=float) | |
parser.add_argument('--save_weights_only', default=True, type=bool) | |
return parent_args | |
def __init__(self, args): | |
self.callbacks = ModelCheckpoint(monitor=args.monitor, | |
save_top_k=args.save_top_k, | |
mode=args.mode, | |
every_n_train_steps=args.every_n_train_steps, | |
save_weights_only=args.save_weights_only, | |
dirpath=args.dirpath, | |
filename=args.filename, | |
save_last=args.save_last) | |
class MT5FinetuneSummary(pl.LightningModule): | |
def add_model_specific_args(parent_args): | |
parser = parent_args.add_argument_group('BaseModel') | |
parser.add_argument('--learning_rate', default=1e-4, type=float) | |
parser.add_argument('--weight_decay', default=0.1, type=float) | |
parser.add_argument('--warmup', default=0.01, type=float) | |
return parent_args | |
def __init__(self, args, num_data): | |
super().__init__() | |
self.args = args | |
self.num_data = num_data | |
print('num_data:', num_data) | |
self.model = MT5ForConditionalGeneration.from_pretrained(args.pretrained_model_path) | |
def setup(self, stage) -> None: | |
if stage == 'fit': | |
num_gpus = self.trainer.gpus if self.trainer.gpus is not None else 0 | |
self.total_step = int(self.trainer.max_epochs * self.num_data / | |
(max(1, num_gpus) * self.trainer.accumulate_grad_batches)) | |
print('Total training step:', self.total_step) | |
def training_step(self, batch, batch_idx): | |
output = self.model(input_ids=batch['input_ids'], | |
attention_mask=batch['attention_mask'], labels=batch['labels']) | |
# output = self.model(input_ids=batch['input_ids'], labels=batch['labels']) | |
# acc = self.comput_metrix(output.logits, batch['labels']) | |
self.log('train_loss', output.loss) | |
return output.loss | |
def comput_metrix(self, logits, labels): | |
y_pred = torch.argmax(logits, dim=-1) | |
y_pred = y_pred.view(size=(-1,)) | |
y_true = labels.view(size=(-1,)).float() | |
corr = torch.eq(y_pred, y_true) | |
acc = torch.sum(corr.float())/labels.size()[0] | |
return acc | |
def validation_step(self, batch, batch_idx): | |
output = self.model(input_ids=batch['input_ids'], | |
attention_mask=batch['attention_mask'], labels=batch['labels']) | |
# output = self.model(input_ids=batch['input_ids'], labels=batch['labels']) | |
# acc = self.comput_metrix(output.logits, batch['labels']) | |
self.log('val_loss', output.loss) | |
# self.log('val_acc', acc) | |
def predict_step(self, batch, batch_idx): | |
text = batch['text'] | |
summary = batch['summary'] | |
generated_ids = self.model.generate( | |
input_ids=batch['input_ids'], | |
attention_mask=batch['attention_mask'], | |
max_length=self.args.max_dec_length | |
) | |
return {"pred": generated_ids, "text": text, "summary": summary} | |
def configure_optimizers(self): | |
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] | |
paras = list( | |
filter(lambda p: p[1].requires_grad, self.named_parameters())) | |
paras = [{ | |
'params': | |
[p for n, p in paras if not any(nd in n for nd in no_decay)], | |
'weight_decay': self.args.weight_decay | |
}, { | |
'params': [p for n, p in paras if any(nd in n for nd in no_decay)], | |
'weight_decay': 0.0 | |
}] | |
optimizer = torch.optim.AdamW(paras, lr=self.args.learning_rate) | |
scheduler = get_linear_schedule_with_warmup( | |
optimizer, int(self.total_step * self.args.warmup), | |
self.total_step) | |
return [{ | |
'optimizer': optimizer, | |
'lr_scheduler': { | |
'scheduler': scheduler, | |
'interval': 'step', | |
'frequency': 1 | |
} | |
}] | |
def save_test(data, args, data_model): | |
tokenizer = AutoTokenizer.from_pretrained(args.pretrained_model_path) | |
with open(os.path.join(args.output_save_path), 'w', encoding='utf-8') as f: | |
for _, batch in enumerate(data): | |
texts = batch['text'] | |
summarys = batch['summary'] | |
preds = batch['pred'] | |
for idx, pred_ids in enumerate(preds): | |
text = texts[idx] | |
summary = summarys[idx] | |
tmp_result = dict() | |
preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) | |
for g in pred_ids] | |
tmp_result['summary'] = ''.join(preds) | |
tmp_result['label'] = summary | |
tmp_result['origin_text'] = text | |
json_data = json.dumps(tmp_result, ensure_ascii=False) | |
f.write(json_data+'\n') | |
print('save the result to '+args.output_save_path) | |
def main(): | |
total_parser = argparse.ArgumentParser("Summary Task") | |
total_parser.add_argument('--do_eval_only', action='store_true', default=False) | |
total_parser.add_argument('--pretrained_model_path', default='google/mt5-small', type=str) | |
total_parser.add_argument('--output_save_path', default='./predict.json', type=str) | |
# * Args for data preprocessing | |
total_parser = LCSTSDataModel.add_data_specific_args(total_parser) | |
# * Args for training | |
total_parser = Trainer.add_argparse_args(total_parser) | |
total_parser = MT5FinetuneSummaryModelCheckpoint.add_argparse_args(total_parser) | |
total_parser = MT5FinetuneSummary.add_model_specific_args(total_parser) | |
# * Args for base model | |
args = total_parser.parse_args() | |
data_model = LCSTSDataModel(args) | |
if not args.do_eval_only: | |
model = MT5FinetuneSummary(args, len(data_model.train_dataloader())) | |
checkpoint_callback = MT5FinetuneSummaryModelCheckpoint(args).callbacks | |
logger = loggers.TensorBoardLogger(save_dir=os.path.join( | |
args.default_root_dir, 'log/'), name='mt5_summary') | |
trainer = Trainer.from_argparse_args(args, | |
logger=logger, | |
callbacks=[checkpoint_callback] | |
) | |
trainer.fit(model, data_model) | |
else: | |
trainer = Trainer.from_argparse_args(args) | |
model = MT5FinetuneSummary.load_from_checkpoint( | |
args.resume_from_checkpoint, args=args, num_data=len(data_model.predict_dataloader())) | |
result = trainer.predict(model, data_model) | |
if torch.distributed.get_rank() == 0: | |
save_test(result, args, data_model) | |
if __name__ == '__main__': | |
main() | |
# test() | |
''' | |
python examples/mt5_summary.py --gpus=1 --test_data=test_public.jsonl | |
--default_root_dir=/cognitive_comp/ganruyi/fengshen/mt5_summary/eval | |
--do_eval_only | |
--resume_from_checkpoint=/cognitive_comp/ganruyi/fengshen/mt5_summary/ckpt/model-epoch=01-train_loss=1.9166.ckpt | |
--strategy=ddp | |
''' | |