HaloMaster's picture
add fengshen
50f0fbb
raw
history blame
10.2 kB
from fengshen.data.task_dataloader.task_datasets import LCSTSDataModel
from transformers import T5Tokenizer, MT5ForConditionalGeneration
from transformers.optimization import get_linear_schedule_with_warmup
from pytorch_lightning import Trainer, loggers
from pytorch_lightning.callbacks import ModelCheckpoint
from transformers import AutoTokenizer
import pytorch_lightning as pl
import json
import argparse
import torch
import os
import sys
sys.path.append('./')
# os.environ["CUDA_VISIBLE_DEVICES"] = '4,5,6,7'
def test():
tokenizer = T5Tokenizer.from_pretrained("google/mt5-small")
article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
summary = "Weiter Verhandlung in Syrien."
article = "日前,方舟子发文直指林志颖旗下爱碧丽推销假保健品,引起哗然。调查发现,爱碧丽没有自己的生产加工厂。 \
其胶原蛋白饮品无核心研发,全部代工生产。号称有“逆生长”功效的爱碧丽“梦幻奇迹限量组”售价>高达1080元,实际成本仅为每瓶4元!"
summary = "林志颖公司疑涉虚假营销无厂房无研发"
inputs = tokenizer(article, rturn_tensors="pt")
tt = tokenizer.encode_plus(summary, max_length=64,
padding='max_length', truncation='longest_first')
print('tt:', tt)
print('inputs:', inputs)
with tokenizer.as_target_tokenizer():
labels = tokenizer(summary, return_tensors="pt")
print('labels:', labels)
print('origin labels:', tokenizer.decode(labels['input_ids'][0]))
model = MT5ForConditionalGeneration.from_pretrained("google/mt5-small")
# outputs = model(input_ids=inputs["input_ids"], labels=labels["input_ids"])
# print(outputs.keys())
# evaluation
model.eval()
generated_ids = model.generate(
input_ids=inputs['input_ids'],
attention_mask=inputs['attention_mask'],
max_length=150,
num_beams=2,
repetition_penalty=2.5,
length_penalty=1.0,
early_stopping=True
)
preds = [tokenizer.decode(g, skip_special_tokens=True,
clean_up_tokenization_spaces=True) for g in generated_ids]
print(preds)
class MT5FinetuneSummaryModelCheckpoint:
@staticmethod
def add_argparse_args(parent_args):
parser = parent_args.add_argument_group('BaseModel')
parser.add_argument('--monitor', default='train_loss', type=str)
parser.add_argument('--mode', default='min', type=str)
parser.add_argument('--dirpath', default='./ckpt/', type=str)
parser.add_argument(
'--filename', default='model-{epoch:02d}-{train_loss:.4f}', type=str)
parser.add_argument('--save_last', action='store_true', default=True)
parser.add_argument('--save_top_k', default=3, type=float)
parser.add_argument('--every_n_train_steps', default=100, type=float)
parser.add_argument('--save_weights_only', default=True, type=bool)
return parent_args
def __init__(self, args):
self.callbacks = ModelCheckpoint(monitor=args.monitor,
save_top_k=args.save_top_k,
mode=args.mode,
every_n_train_steps=args.every_n_train_steps,
save_weights_only=args.save_weights_only,
dirpath=args.dirpath,
filename=args.filename,
save_last=args.save_last)
class MT5FinetuneSummary(pl.LightningModule):
@staticmethod
def add_model_specific_args(parent_args):
parser = parent_args.add_argument_group('BaseModel')
parser.add_argument('--learning_rate', default=1e-4, type=float)
parser.add_argument('--weight_decay', default=0.1, type=float)
parser.add_argument('--warmup', default=0.01, type=float)
return parent_args
def __init__(self, args, num_data):
super().__init__()
self.args = args
self.num_data = num_data
print('num_data:', num_data)
self.model = MT5ForConditionalGeneration.from_pretrained(args.pretrained_model_path)
def setup(self, stage) -> None:
if stage == 'fit':
num_gpus = self.trainer.gpus if self.trainer.gpus is not None else 0
self.total_step = int(self.trainer.max_epochs * self.num_data /
(max(1, num_gpus) * self.trainer.accumulate_grad_batches))
print('Total training step:', self.total_step)
def training_step(self, batch, batch_idx):
output = self.model(input_ids=batch['input_ids'],
attention_mask=batch['attention_mask'], labels=batch['labels'])
# output = self.model(input_ids=batch['input_ids'], labels=batch['labels'])
# acc = self.comput_metrix(output.logits, batch['labels'])
self.log('train_loss', output.loss)
return output.loss
def comput_metrix(self, logits, labels):
y_pred = torch.argmax(logits, dim=-1)
y_pred = y_pred.view(size=(-1,))
y_true = labels.view(size=(-1,)).float()
corr = torch.eq(y_pred, y_true)
acc = torch.sum(corr.float())/labels.size()[0]
return acc
def validation_step(self, batch, batch_idx):
output = self.model(input_ids=batch['input_ids'],
attention_mask=batch['attention_mask'], labels=batch['labels'])
# output = self.model(input_ids=batch['input_ids'], labels=batch['labels'])
# acc = self.comput_metrix(output.logits, batch['labels'])
self.log('val_loss', output.loss)
# self.log('val_acc', acc)
def predict_step(self, batch, batch_idx):
text = batch['text']
summary = batch['summary']
generated_ids = self.model.generate(
input_ids=batch['input_ids'],
attention_mask=batch['attention_mask'],
max_length=self.args.max_dec_length
)
return {"pred": generated_ids, "text": text, "summary": summary}
def configure_optimizers(self):
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
paras = list(
filter(lambda p: p[1].requires_grad, self.named_parameters()))
paras = [{
'params':
[p for n, p in paras if not any(nd in n for nd in no_decay)],
'weight_decay': self.args.weight_decay
}, {
'params': [p for n, p in paras if any(nd in n for nd in no_decay)],
'weight_decay': 0.0
}]
optimizer = torch.optim.AdamW(paras, lr=self.args.learning_rate)
scheduler = get_linear_schedule_with_warmup(
optimizer, int(self.total_step * self.args.warmup),
self.total_step)
return [{
'optimizer': optimizer,
'lr_scheduler': {
'scheduler': scheduler,
'interval': 'step',
'frequency': 1
}
}]
def save_test(data, args, data_model):
tokenizer = AutoTokenizer.from_pretrained(args.pretrained_model_path)
with open(os.path.join(args.output_save_path), 'w', encoding='utf-8') as f:
for _, batch in enumerate(data):
texts = batch['text']
summarys = batch['summary']
preds = batch['pred']
for idx, pred_ids in enumerate(preds):
text = texts[idx]
summary = summarys[idx]
tmp_result = dict()
preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True)
for g in pred_ids]
tmp_result['summary'] = ''.join(preds)
tmp_result['label'] = summary
tmp_result['origin_text'] = text
json_data = json.dumps(tmp_result, ensure_ascii=False)
f.write(json_data+'\n')
print('save the result to '+args.output_save_path)
def main():
total_parser = argparse.ArgumentParser("Summary Task")
total_parser.add_argument('--do_eval_only', action='store_true', default=False)
total_parser.add_argument('--pretrained_model_path', default='google/mt5-small', type=str)
total_parser.add_argument('--output_save_path', default='./predict.json', type=str)
# * Args for data preprocessing
total_parser = LCSTSDataModel.add_data_specific_args(total_parser)
# * Args for training
total_parser = Trainer.add_argparse_args(total_parser)
total_parser = MT5FinetuneSummaryModelCheckpoint.add_argparse_args(total_parser)
total_parser = MT5FinetuneSummary.add_model_specific_args(total_parser)
# * Args for base model
args = total_parser.parse_args()
data_model = LCSTSDataModel(args)
if not args.do_eval_only:
model = MT5FinetuneSummary(args, len(data_model.train_dataloader()))
checkpoint_callback = MT5FinetuneSummaryModelCheckpoint(args).callbacks
logger = loggers.TensorBoardLogger(save_dir=os.path.join(
args.default_root_dir, 'log/'), name='mt5_summary')
trainer = Trainer.from_argparse_args(args,
logger=logger,
callbacks=[checkpoint_callback]
)
trainer.fit(model, data_model)
else:
trainer = Trainer.from_argparse_args(args)
model = MT5FinetuneSummary.load_from_checkpoint(
args.resume_from_checkpoint, args=args, num_data=len(data_model.predict_dataloader()))
result = trainer.predict(model, data_model)
if torch.distributed.get_rank() == 0:
save_test(result, args, data_model)
if __name__ == '__main__':
main()
# test()
'''
python examples/mt5_summary.py --gpus=1 --test_data=test_public.jsonl
--default_root_dir=/cognitive_comp/ganruyi/fengshen/mt5_summary/eval
--do_eval_only
--resume_from_checkpoint=/cognitive_comp/ganruyi/fengshen/mt5_summary/ckpt/model-epoch=01-train_loss=1.9166.ckpt
--strategy=ddp
'''