Spaces:
Runtime error
Runtime error
#Part 1 | |
import matplotlib as mpl | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
import numpy as np | |
import gradio as gr | |
import tensorflow as tf | |
from sklearn.metrics import accuracy_score | |
from sklearn.neighbors import KNeighborsClassifier | |
#step 1 | |
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() | |
input_module1 = gr.inputs.Image(label = "test_image", image_mode='L', shape = (28,28)) | |
input_module2 = gr.inputs.Slider(1, 10, step=1, label = "k") | |
output_module1 = gr.outputs.Textbox(label = "Predicted Digit") | |
output_module2 = gr.outputs.Label(label = "Predicted Probability per class" num_top_classes=4) | |
def image_classification(input1, input2): | |
image = input1.reshape(1, 28 *28) | |
X_train = x_train.reshape(60000, 28*28) | |
X_test = x_test.reshape(10000, 28*28) | |
kNN_classifier = KNeighborsClassifier(n_neighbors=input2) | |
kNN_classifier.fit(X_train, y_train) | |
y_test_predicted_label = kNN_classifier.predict(image) | |
output1 = y_test_predicted_label[0]# text output example | |
output2 = y_test_predicted_label # image-like array output example | |
return output1,output2 | |
# Step 6.4: Put all three component together into the gradio's interface function | |
gr.Interface(fn=image_classification, | |
inputs=[input_module1, input_module2], | |
outputs=[output_module1, output_module2] | |
).launch(debug = True) |