Spaces:
Sleeping
Sleeping
import os | |
import caffe | |
import argparse | |
import numpy as np | |
import scipy.misc | |
from PIL import Image | |
from util import segrun, fast_hist, get_scores | |
from cityscapes import cityscapes | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--cityscapes_dir", type=str, required=True, help="Path to the original cityscapes dataset") | |
parser.add_argument("--result_dir", type=str, required=True, help="Path to the generated images to be evaluated") | |
parser.add_argument("--output_dir", type=str, required=True, help="Where to save the evaluation results") | |
parser.add_argument("--caffemodel_dir", type=str, default='./scripts/eval_cityscapes/caffemodel/', help="Where the FCN-8s caffemodel stored") | |
parser.add_argument("--gpu_id", type=int, default=0, help="Which gpu id to use") | |
parser.add_argument("--split", type=str, default='val', help="Data split to be evaluated") | |
parser.add_argument("--save_output_images", type=int, default=0, help="Whether to save the FCN output images") | |
args = parser.parse_args() | |
def main(): | |
if not os.path.isdir(args.output_dir): | |
os.makedirs(args.output_dir) | |
if args.save_output_images > 0: | |
output_image_dir = args.output_dir + 'image_outputs/' | |
if not os.path.isdir(output_image_dir): | |
os.makedirs(output_image_dir) | |
CS = cityscapes(args.cityscapes_dir) | |
n_cl = len(CS.classes) | |
label_frames = CS.list_label_frames(args.split) | |
caffe.set_device(args.gpu_id) | |
caffe.set_mode_gpu() | |
net = caffe.Net(args.caffemodel_dir + '/deploy.prototxt', | |
args.caffemodel_dir + 'fcn-8s-cityscapes.caffemodel', | |
caffe.TEST) | |
hist_perframe = np.zeros((n_cl, n_cl)) | |
for i, idx in enumerate(label_frames): | |
if i % 10 == 0: | |
print('Evaluating: %d/%d' % (i, len(label_frames))) | |
city = idx.split('_')[0] | |
# idx is city_shot_frame | |
label = CS.load_label(args.split, city, idx) | |
im_file = args.result_dir + '/' + idx + '_leftImg8bit.png' | |
im = np.array(Image.open(im_file)) | |
im = scipy.misc.imresize(im, (label.shape[1], label.shape[2])) | |
# im = np.array(Image.fromarray(im).resize((label.shape[1], label.shape[2]))) # Note: scipy.misc.imresize is deprecated, but we still use it for reproducibility. | |
out = segrun(net, CS.preprocess(im)) | |
hist_perframe += fast_hist(label.flatten(), out.flatten(), n_cl) | |
if args.save_output_images > 0: | |
label_im = CS.palette(label) | |
pred_im = CS.palette(out) | |
scipy.misc.imsave(output_image_dir + '/' + str(i) + '_pred.jpg', pred_im) | |
scipy.misc.imsave(output_image_dir + '/' + str(i) + '_gt.jpg', label_im) | |
scipy.misc.imsave(output_image_dir + '/' + str(i) + '_input.jpg', im) | |
mean_pixel_acc, mean_class_acc, mean_class_iou, per_class_acc, per_class_iou = get_scores(hist_perframe) | |
with open(args.output_dir + '/evaluation_results.txt', 'w') as f: | |
f.write('Mean pixel accuracy: %f\n' % mean_pixel_acc) | |
f.write('Mean class accuracy: %f\n' % mean_class_acc) | |
f.write('Mean class IoU: %f\n' % mean_class_iou) | |
f.write('************ Per class numbers below ************\n') | |
for i, cl in enumerate(CS.classes): | |
while len(cl) < 15: | |
cl = cl + ' ' | |
f.write('%s: acc = %f, iou = %f\n' % (cl, per_class_acc[i], per_class_iou[i])) | |
main() | |