ArtTrain / app.py
Haimi's picture
Rename appoff.py to app.py
742bf17
import gradio as gr
import torch
from models import create_model
from options.test_options import TestOptions
from PIL import Image
from torchvision import transforms
# Set options
opt = TestOptions().parse(use_cmd_line=False)
opt.model = 'pix2pix'
opt.netG = 'unet_256'
opt.dataset_mode = 'single'
opt.norm = 'batch'
opt.no_dropout = True
opt.init_type = 'normal'
opt.init_gain = 0.02
opt.dataroot = './dummy_path'
opt.checkpoints_dir = './checkpoints'
opt.name = 'artgan_pix2pix'
opt.preprocess = 'resize_and_crop'
opt.load_size = 290
opt.crop_size = 256
opt.no_flip = False
# Load model
model = create_model(opt)
model.setup(opt)
model.eval()
# Get Transform function from base_dataset
def get_transform(opt, params=None, grayscale=False, method=Image.BICUBIC, convert=True):
transform_list = []
if grayscale:
transform_list.append(transforms.Grayscale(1))
if 'resize' in opt.preprocess:
osize = [opt.load_size, opt.load_size]
transform_list.append(transforms.Resize(osize, method))
if 'crop' in opt.preprocess:
if params is None:
transform_list.append(transforms.RandomCrop(opt.crop_size))
else:
transform_list.append(transforms.Lambda(lambda img: __crop(img, params['crop_pos'], opt.crop_size)))
if not opt.no_flip:
if params is None:
transform_list.append(transforms.RandomHorizontalFlip())
elif params['flip']:
transform_list.append(transforms.Lambda(lambda img: __flip(img, params['flip'])))
if convert:
transform_list += [transforms.ToTensor()]
if grayscale:
transform_list += [transforms.Normalize((0.5,), (0.5,))]
else:
transform_list += [transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
return transforms.Compose(transform_list)
def generate_art(input_image):
transform = get_transform(opt)
input_tensor = transform(input_image).unsqueeze(0)
with torch.no_grad():
output = model.netG(input_tensor)
output_image = transforms.ToPILImage()(output[0])
return output_image
# Define the Gradio Interface
gr.Interface(
generate_art,
inputs=gr.Image(label="Upload 5x5 vector map", type="pil"),
outputs=gr.Image(type="pil"),
title="ArtGAN Generator",
).launch()