FindMyMovie / app.py
HaggiVaggi's picture
Update app.py
ab83242
raw
history blame
2.37 kB
import streamlit as st
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModel
import faiss
import numpy as np
@st.cache_data
def load_data(url):
df = pd.read_csv(url) # 👈 Download the data
return df
df = load_data('data/final_data.csv')
st.title('Умный поиск фильмов 🔍🎦')
st.header('Выполнила команда "FindMyMovie":')
st.subheader('🎥Алексей')
st.subheader('🎬Светлана')
st.subheader('🍿Тата')
st.subheader('Наши задачи:')
st.markdown("""
<span style='font-size:18px; color:purple;'>Задача 1:</span> Спарсить информацию по 5 тыс. фильмов и обработать ее
<span style='font-size:18px; color:purple;'>Задача 2:</span> Разработать систему поиска фильма по пользовательскому запросу
""", unsafe_allow_html=True)
st.markdown(
f"<div style='border: 2px solid #800080; padding: 10px; text-align: center;'><span style='font-size: 20px; color: violet;'>Мы любезно позаимствовали данные о фильмах с \
Киноафиши, ни один участник команды при этом не пострадал 💟</span></div>",
unsafe_allow_html=True
)
st.subheader(' '*10)
st.info('🌟Сервис принимает на вход описание фильма от пользователя и возвращает заданное количество подходящих вариантов')
st.info('🌟Если не знаете, что посмотреть, нажмите кнопку "Сгенерировать" - сервис предложит вам 10 случайных фильмов из библиотеки')
# Отображаем HTML-разметку в Streamlit
if st.button("Сгенерировать 🎲"):
# Получение случайных 10 строк
random_rows = df[['movie_title', 'description']].sample(n=10).reset_index(drop=True)
random_rows.index = random_rows.index + 1
st.markdown(f"<span style='font-size:{20}px; color:violet'>{'Сегодня мы подобрали для вас следующие фильмы:'}</span>", unsafe_allow_html=True)
st.write(random_rows)
st.image("apps/1.png", use_column_width=True)