home23 / app.py
Hadiil's picture
Update app.py
fd94982 verified
from fastapi import FastAPI, UploadFile, File, Form, HTTPException, Request
from fastapi.staticfiles import StaticFiles
from fastapi.responses import RedirectResponse, JSONResponse, HTMLResponse
from transformers import pipeline, ViltProcessor, ViltForQuestionAnswering, M2M100ForConditionalGeneration, M2M100Tokenizer
from typing import Optional, Dict, Any, List
import logging
import time
import os
import io
import json
import re
from PIL import Image
from docx import Document
import fitz # PyMuPDF
import pandas as pd
from functools import lru_cache
import torch
import numpy as np
from pydantic import BaseModel
import asyncio
import google.generativeai as genai
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger("cosmic_ai")
# Create app directory if it doesn't exist
upload_dir = os.getenv('UPLOAD_DIR', '/tmp/uploads')
os.makedirs(upload_dir, exist_ok=True)
app = FastAPI(
title="Cosmic AI Assistant",
description="An advanced AI assistant with space-themed interface and translation features",
version="2.0.0"
)
# Mount static files
app.mount("/static", StaticFiles(directory="static"), name="static")
# Gemini API Configuration
API_KEY = "AIzaSyCwmgD8KxzWiuivtySNtcZF_rfTvx9s9sY" # Replace with your actual API key
genai.configure(api_key=API_KEY)
# Model configurations
MODELS = {
"summarization": "sshleifer/distilbart-cnn-12-6",
"image-to-text": "Salesforce/blip-image-captioning-large",
"visual-qa": "dandelin/vilt-b32-finetuned-vqa",
"chatbot": "gemini-1.5-pro", # Handles both chat and text generation
"translation": "facebook/m2m100_418M"
}
# Supported languages for translation
SUPPORTED_LANGUAGES = {
"english": "en",
"french": "fr",
"german": "de",
"spanish": "es",
"italian": "it",
"russian": "ru",
"chinese": "zh",
"japanese": "ja",
"arabic": "ar",
"hindi": "hi",
"portuguese": "pt",
"korean": "ko"
}
# Global variables for pre-loaded translation model
translation_model = None
translation_tokenizer = None
# Cache for model loading (excluding translation)
@lru_cache(maxsize=8)
def load_model(task: str, model_name: str = None):
"""Cached model loader with proper task names and error handling"""
try:
logger.info(f"Loading model for task: {task}, model: {model_name or MODELS.get(task)}")
start_time = time.time()
model_to_load = model_name or MODELS.get(task)
if task == "chatbot": # Gemini handles both chat and text generation
return genai.GenerativeModel(model_to_load)
if task == "visual-qa":
processor = ViltProcessor.from_pretrained(model_to_load)
model = ViltForQuestionAnswering.from_pretrained(model_to_load)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
def vqa_function(image, question, **generate_kwargs):
if image.mode != "RGB":
image = image.convert("RGB")
inputs = processor(image, question, return_tensors="pt").to(device)
logger.info(f"VQA inputs - question: {question}, image size: {image.size}")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
idx = logits.argmax(-1).item()
answer = model.config.id2label[idx]
logger.info(f"VQA raw output: {answer}")
return answer
return vqa_function
return pipeline(task, model=model_to_load)
except Exception as e:
logger.error(f"Model load failed: {str(e)}")
raise HTTPException(status_code=500, detail=f"Model loading failed: {task} - {str(e)}")
def get_gemini_response(user_input: str, is_generation: bool = False):
"""Function to generate response with Gemini for both chat and text generation"""
if not user_input:
return "Please provide some input."
try:
chatbot = load_model("chatbot")
if is_generation:
prompt = f"Generate creative text based on this prompt: {user_input}"
else:
prompt = user_input
response = chatbot.generate_content(prompt)
return response.text.strip()
except Exception as e:
return f"Error: {str(e)}"
def translate_text(text: str, target_language: str):
"""Translate text to any target language using pre-loaded M2M100 model"""
if not text:
return "Please provide text to translate."
try:
global translation_model, translation_tokenizer
target_lang = target_language.lower()
if target_lang not in SUPPORTED_LANGUAGES:
similar = [lang for lang in SUPPORTED_LANGUAGES if target_lang in lang or lang in target_lang]
if similar:
target_lang = similar[0]
else:
return f"Language '{target_language}' not supported. Available languages: {', '.join(SUPPORTED_LANGUAGES.keys())}"
lang_code = SUPPORTED_LANGUAGES[target_lang]
if translation_model is None or translation_tokenizer is None:
raise Exception("Translation model not initialized")
match = re.search(r'how to say\s+(.+?)\s+in\s+(\w+)', text.lower())
if match:
text_to_translate = match.group(1)
else:
content_match = re.search(r'(?:translate|convert).*to\s+[a-zA-Z]+\s*[:\s]*(.+)', text, re.IGNORECASE)
text_to_translate = content_match.group(1) if content_match else text
translation_tokenizer.src_lang = "en"
encoded = translation_tokenizer(text_to_translate, return_tensors="pt", padding=True, truncation=True).to(translation_model.device)
start_time = time.time()
generated_tokens = translation_model.generate(
**encoded,
forced_bos_token_id=translation_tokenizer.get_lang_id(lang_code),
max_length=512,
num_beams=1,
early_stopping=True
)
translated_text = translation_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
logger.info(f"Translation took {time.time() - start_time:.2f} seconds")
return translated_text
except Exception as e:
logger.error(f"Translation error: {str(e)}", exc_info=True)
return f"Translation error: {str(e)}"
def detect_intent(text: str = None, file: UploadFile = None) -> tuple[str, str]:
"""Enhanced intent detection with dynamic translation support"""
target_language = "English" # Default
if file:
content_type = file.content_type.lower() if file.content_type else ""
filename = file.filename.lower() if file.filename else ""
# Catch "what’s this" and "does this fly" first for images
if content_type.startswith('image/') and text:
text_lower = text.lower()
if "what’s this" in text_lower:
return "visual-qa", target_language
if "does this fly" in text_lower:
return "visual-qa", target_language
# Broaden "fly" questions for VQA
if "fly" in text_lower and any(q in text_lower for q in ['does', 'can', 'will']):
return "visual-qa", target_language
if content_type.startswith('image/'):
if text and any(q in text.lower() for q in ['what is', 'what\'s', 'describe', 'tell me about', 'explain','how many', 'what color', 'is there', 'are they', 'does the']):
return "visual-qa", target_language
return "image-to-text", target_language
elif filename.endswith(('.xlsx', '.xls', '.csv')):
return "visualize", target_language
elif filename.endswith(('.pdf', '.docx', '.doc', '.txt', '.rtf')):
return "summarize", target_language
if not text:
return "chatbot", target_language
text_lower = text.lower()
if any(keyword in text_lower for keyword in ['chat', 'talk', 'converse', 'ask gemini']):
return "chatbot", target_language
translate_patterns = [
r'translate.*to\s+\[?([a-zA-Z]+)\]?:?\s*(.*)',
r'convert.*to\s+\[?([a-zA-Z]+)\]?:?\s*(.*)',
r'how to say.*in\s+\[?([a-zA-Z]+)\]?:?\s*(.*)'
]
for pattern in translate_patterns:
translate_match = re.search(pattern, text_lower)
if translate_match:
potential_lang = translate_match.group(1).lower()
if potential_lang in SUPPORTED_LANGUAGES:
target_language = potential_lang.capitalize()
return "translate", target_language
else:
logger.warning(f"Invalid language detected: {potential_lang}")
return "chatbot", target_language
vqa_patterns = [
r'how (many|much)',
r'what (color|size|position|shape)',
r'is (there|that|this) (a|an)',
r'are (they|there) (any|some)',
r'does (the|this) (image|picture) (show|contain)'
]
if any(re.search(pattern, text_lower) for pattern in vqa_patterns):
return "visual-qa", target_language
summarization_patterns = [
r'\b(summar(y|ize|ise)|brief( overview)?)\b',
r'\b(long article|text|document)\b',
r'\bcan you (summar|brief|condense)\b',
r'\b(short summary|brief explanation)\b',
r'\b(overview|main points|key ideas)\b',
r'\b(tl;?dr|too long didn\'?t read)\b'
]
if any(re.search(pattern, text_lower) for pattern in summarization_patterns):
return "summarize", target_language
generation_patterns = [
r'\b(write|generate|create|compose)\b',
r'\b(story|poem|essay|text|content)\b'
]
if any(re.search(pattern, text_lower) for pattern in generation_patterns):
return "text-generation", target_language
if len(text) > 100:
return "summarize", target_language
if file and file.content_type and file.content_type.startswith('image/'):
if text and "what’s this" in text_lower:
return "visual-qa", target_language
if text and any(q in text_lower for q in ['does this', 'is this', 'can this']):
return "visual-qa", target_language
return "chatbot", target_language
class ProcessResponse(BaseModel):
response: str
type: str
additional_data: Optional[Dict[str, Any]] = None
@app.get("/chatbot")
async def chatbot_interface():
"""Redirect to the static index.html file for the chatbot interface"""
return RedirectResponse(url="/static/index.html")
@app.post("/chat")
async def chat_endpoint(data: dict):
message = data.get("message", "")
if not message:
raise HTTPException(status_code=400, detail="No message provided")
try:
response = get_gemini_response(message)
return {"response": response}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Chat error: {str(e)}")
@app.post("/process", response_model=ProcessResponse)
async def process_input(
request: Request,
text: str = Form(None),
file: UploadFile = File(None)
):
"""Enhanced unified endpoint with dynamic translation"""
start_time = time.time()
client_ip = request.client.host
logger.info(f"Request from {client_ip}: text={text[:50] + '...' if text and len(text) > 50 else text}, file={file.filename if file else None}")
intent, target_language = detect_intent(text, file)
logger.info(f"Detected intent: {intent}, target_language: {target_language}")
try:
if intent == "chatbot":
response = get_gemini_response(text)
return {"response": response, "type": "chat"}
elif intent == "translate":
content = await extract_text_from_file(file) if file else text
if "all languages" in text.lower():
translations = {}
phrase_to_translate = "I want to explore the stars" if "I want to explore the stars" in text else content
for lang, code in SUPPORTED_LANGUAGES.items():
translation_tokenizer.src_lang = "en"
encoded = translation_tokenizer(phrase_to_translate, return_tensors="pt").to(translation_model.device)
generated_tokens = translation_model.generate(
**encoded,
forced_bos_token_id=translation_tokenizer.get_lang_id(code),
max_length=512,
num_beams=1
)
translations[lang] = translation_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
response = "\n".join(f"{lang.capitalize()}: {translations[lang]}" for lang in translations)
logger.info(f"Translated to all supported languages: {', '.join(translations.keys())}")
return {"response": response, "type": "translation"}
else:
translated_text = translate_text(content, target_language)
return {"response": translated_text, "type": "translation"}
elif intent == "summarize":
content = await extract_text_from_file(file) if file else text
summarizer = load_model("summarization")
content_length = len(content.split())
max_len = max(30, min(150, content_length//2))
min_len = max(15, min(30, max_len//2))
if len(content) > 1024:
chunks = [content[i:i+1024] for i in range(0, len(content), 1024)]
summaries = []
for chunk in chunks[:3]:
summary = summarizer(
chunk,
max_length=max_len,
min_length=min_len,
do_sample=False,
truncation=True
)
summaries.append(summary[0]['summary_text'])
final_summary = " ".join(summaries)
else:
summary = summarizer(
content,
max_length=max_len,
min_length=min_len,
do_sample=False,
truncation=True
)
final_summary = summary[0]['summary_text']
final_summary = re.sub(r'\s+', ' ', final_summary).strip()
return {"response": final_summary, "type": "summary"}
elif intent == "image-to-text":
if not file or not file.content_type.startswith('image/'):
raise HTTPException(status_code=400, detail="An image file is required")
image = Image.open(io.BytesIO(await file.read()))
captioner = load_model("image-to-text")
caption = captioner(image, max_new_tokens=50)
return {"response": caption[0]['generated_text'], "type": "caption"}
elif intent == "visual-qa":
if not file or not file.content_type.startswith('image/'):
raise HTTPException(status_code=400, detail="An image file is required")
if not text:
raise HTTPException(status_code=400, detail="A question is required for VQA")
image = Image.open(io.BytesIO(await file.read())).convert("RGB")
vqa_pipeline = load_model("visual-qa")
question = text.strip()
if not question.endswith('?'):
question += '?'
answer = vqa_pipeline(
image=image,
question=question
)
answer = answer.strip()
if not answer or answer.lower() == question.lower():
logger.warning(f"VQA failed to generate a meaningful answer: {answer}")
answer = "I couldn't determine the answer from the image."
else:
answer = answer.capitalize()
if not answer.endswith(('.', '!', '?')):
answer += '.'
chatbot = load_model("chatbot")
if "fly" in question.lower():
answer = chatbot.generate_content(f"Make this fun and spacey: {answer}").text.strip()
else:
answer = chatbot.generate_content(f"Make this cosmic and poetic: {answer}").text.strip()
logger.info(f"Final VQA answer: {answer}")
return {
"response": answer,
"type": "visual_qa",
"additional_data": {
"question": text,
"image_size": f"{image.width}x{image.height}"
}
}
elif intent == "visualize":
if not file:
raise HTTPException(status_code=400, detail="An Excel file is required")
file_content = await file.read()
if file.filename.endswith('.csv'):
df = pd.read_csv(io.BytesIO(file_content))
else:
df = pd.read_excel(io.BytesIO(file_content))
code = generate_visualization_code(df, text)
stats = df.describe().to_string()
response = f"Stats:\n{stats}\n\nChart Code:\n{code}"
return {"response": response, "type": "visualization_code"}
elif intent == "text-generation":
response = get_gemini_response(text, is_generation=True)
lines = response.split(". ")
formatted_poem = "\n".join(line.strip() + ("." if not line.endswith(".") else "") for line in lines if line)
return {"response": formatted_poem, "type": "generated_text"}
else:
response = get_gemini_response(text or "Hello! How can I assist you?")
return {"response": response, "type": "chat"}
except Exception as e:
logger.error(f"Processing error: {str(e)}", exc_info=True)
raise HTTPException(status_code=500, detail=str(e))
finally:
process_time = time.time() - start_time
logger.info(f"Request processed in {process_time:.2f} seconds")
async def extract_text_from_file(file: UploadFile) -> str:
"""Enhanced text extraction with multiple fallbacks"""
if not file:
return ""
content = await file.read()
filename = file.filename.lower()
try:
if filename.endswith('.pdf'):
try:
doc = fitz.open(stream=content, filetype="pdf")
if doc.is_encrypted:
return "PDF is encrypted and cannot be read"
text = ""
for page in doc:
text += page.get_text()
return text
except Exception as pdf_error:
logger.warning(f"PyMuPDF failed: {str(pdf_error)}. Trying pdfminer.six...")
from pdfminer.high_level import extract_text
from io import BytesIO
return extract_text(BytesIO(content))
elif filename.endswith(('.docx', '.doc')):
doc = Document(io.BytesIO(content))
return "\n".join(para.text for para in doc.paragraphs)
elif filename.endswith('.txt'):
return content.decode('utf-8', errors='replace')
elif filename.endswith('.rtf'):
text = content.decode('utf-8', errors='replace')
text = re.sub(r'\\[a-z]+', ' ', text)
text = re.sub(r'\{|\}|\\', '', text)
return text
else:
raise HTTPException(status_code=400, detail=f"Unsupported file format: {filename}")
except Exception as e:
logger.error(f"File extraction error: {str(e)}", exc_info=True)
raise HTTPException(
status_code=500,
detail=f"Error extracting text: {str(e)}. Supported formats: PDF, DOCX, TXT, RTF"
)
def generate_visualization_code(df: pd.DataFrame, request: str = None) -> str:
"""Generate visualization code based on data analysis"""
num_rows, num_cols = df.shape
numeric_cols = df.select_dtypes(include=[np.number]).columns.tolist()
categorical_cols = df.select_dtypes(include=['object']).columns.tolist()
date_cols = [col for col in df.columns if df[col].dtype == 'datetime64[ns]' or
(isinstance(df[col].dtype, object) and pd.to_datetime(df[col], errors='coerce').notna().all())]
if request:
request_lower = request.lower()
else:
request_lower = ""
if len(numeric_cols) >= 2 and ("scatter" in request_lower or "correlation" in request_lower):
x_col = numeric_cols[0]
y_col = numeric_cols[1]
return f"""import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_excel('data.xlsx')
plt.figure(figsize=(10, 6))
sns.regplot(x='{x_col}', y='{y_col}', data=df, scatter_kws={{'alpha': 0.6}})
plt.title('Correlation between {x_col} and {y_col}')
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.savefig('correlation_plot.png')
plt.show()
correlation = df['{x_col}'].corr(df['{y_col}'])
print(f"Correlation coefficient: {{correlation:.4f}}")"""
elif len(numeric_cols) >= 1 and len(categorical_cols) >= 1 and ("bar" in request_lower or "comparison" in request_lower):
cat_col = categorical_cols[0]
num_col = numeric_cols[0]
return f"""import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_excel('data.xlsx')
plt.figure(figsize=(12, 7))
ax = sns.barplot(x='{cat_col}', y='{num_col}', data=df, palette='viridis')
for p in ax.patches:
ax.annotate(f'{{p.get_height():.1f}}',
(p.get_x() + p.get_width() / 2., p.get_height()),
ha='center', va='bottom', fontsize=10, color='black', xytext=(0, 5),
textcoords='offset points')
plt.title('Comparison of {num_col} by {cat_col}', fontsize=15)
plt.xlabel('{cat_col}', fontsize=12)
plt.ylabel('{num_col}', fontsize=12)
plt.xticks(rotation=45, ha='right')
plt.grid(axis='y', alpha=0.3)
plt.tight_layout()
plt.savefig('comparison_chart.png')
plt.show()"""
elif len(numeric_cols) >= 1 and ("distribution" in request_lower or "histogram" in request_lower):
num_col = numeric_cols[0]
return f"""import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_excel('data.xlsx')
plt.figure(figsize=(10, 6))
sns.histplot(df['{num_col}'], kde=True, bins=20, color='purple')
plt.title('Distribution of {num_col}', fontsize=15)
plt.xlabel('{num_col}', fontsize=12)
plt.ylabel('Frequency', fontsize=12)
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.savefig('distribution_plot.png')
plt.show()
print(df['{num_col}'].describe())"""
else:
return f"""import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
df = pd.read_excel('data.xlsx')
print("Descriptive statistics:")
print(df.describe())
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
numeric_df = df.select_dtypes(include=[np.number])
if not numeric_df.empty and numeric_df.shape[1] > 1:
sns.heatmap(numeric_df.corr(), annot=True, cmap='coolwarm', fmt='.2f', ax=axes[0, 0])
axes[0, 0].set_title('Correlation Matrix')
if not numeric_df.empty:
for i, col in enumerate(numeric_df.columns[:1]):
sns.histplot(df[col], kde=True, ax=axes[0, 1], color='purple')
axes[0, 1].set_title(f'Distribution of {{col}}')
axes[0, 1].set_xlabel(col)
axes[0, 1].set_ylabel('Frequency')
categorical_cols = df.select_dtypes(include=['object']).columns
if len(categorical_cols) > 0 and not numeric_df.empty:
cat_col = categorical_cols[0]
num_col = numeric_df.columns[0]
sns.barplot(x=cat_col, y=num_col, data=df, ax=axes[1, 0], palette='viridis')
axes[1, 0].set_title(f'{{num_col}} by {{cat_col}}')
axes[1, 0].set_xticklabels(axes[1, 0].get_xticklabels(), rotation=45, ha='right')
if not numeric_df.empty and len(categorical_cols) > 0:
cat_col = categorical_cols[0]
num_col = numeric_df.columns[0]
sns.boxplot(x=cat_col, y=num_col, data=df, ax=axes[1, 1], palette='Set3')
axes[1, 1].set_title(f'Distribution of {{num_col}} by {{cat_col}}')
axes[1, 1].set_xticklabels(axes[1, 1].get_xticklabels(), rotation=45, ha='right')
plt.tight_layout()
plt.savefig('dashboard.png')
plt.show()"""
@app.get("/", include_in_schema=False)
async def home():
"""Redirect to the static index.html file"""
return RedirectResponse(url="/static/index.html")
@app.get("/health", include_in_schema=True)
async def health_check():
"""Health check endpoint"""
return {"status": "healthy", "version": "2.0.0"}
@app.get("/models", include_in_schema=True)
async def list_models():
"""List available models"""
return {"models": MODELS}
@app.on_event("startup")
async def startup_event():
"""Pre-load models at startup with timeout"""
global translation_model, translation_tokenizer
logger.info("Starting model pre-loading...")
async def load_model_with_timeout(task):
try:
await asyncio.wait_for(asyncio.to_thread(load_model, task), timeout=60.0)
logger.info(f"Successfully loaded {task} model")
except asyncio.TimeoutError:
logger.warning(f"Timeout loading {task} model - will load on demand")
except Exception as e:
logger.error(f"Error pre-loading {task}: {str(e)}")
try:
model_name = MODELS["translation"]
translation_model = M2M100ForConditionalGeneration.from_pretrained(model_name)
translation_tokenizer = M2M100Tokenizer.from_pretrained(model_name)
device = "cuda" if torch.cuda.is_available() else "cpu"
translation_model.to(device)
logger.info("Translation model pre-loaded successfully")
except Exception as e:
logger.error(f"Error pre-loading translation model: {str(e)}")
await asyncio.gather(
load_model_with_timeout("summarization"),
load_model_with_timeout("image-to-text"),
load_model_with_timeout("visual-qa"),
load_model_with_timeout("chatbot")
)
if __name__ == "__main__":
import uvicorn
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)