Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,8 @@
|
|
| 1 |
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
|
| 2 |
from fastapi.staticfiles import StaticFiles
|
| 3 |
-
from fastapi.responses import RedirectResponse
|
| 4 |
from transformers import pipeline, MarianMTModel, MarianTokenizer
|
|
|
|
| 5 |
from typing import Optional
|
| 6 |
import logging
|
| 7 |
from PIL import Image
|
|
@@ -10,18 +11,18 @@ from docx import Document
|
|
| 10 |
import fitz # PyMuPDF
|
| 11 |
import pandas as pd
|
| 12 |
from functools import lru_cache
|
| 13 |
-
import
|
| 14 |
|
| 15 |
# Configure logging
|
| 16 |
logging.basicConfig(level=logging.INFO)
|
| 17 |
logger = logging.getLogger(__name__)
|
| 18 |
|
| 19 |
-
app = FastAPI(title="
|
| 20 |
|
| 21 |
# Mount static files
|
| 22 |
app.mount("/static", StaticFiles(directory="static"), name="static")
|
| 23 |
|
| 24 |
-
#
|
| 25 |
MODELS = {
|
| 26 |
"summarization": "t5-small",
|
| 27 |
"translation": {
|
|
@@ -30,12 +31,11 @@ MODELS = {
|
|
| 30 |
"de": "Helsinki-NLP/opus-mt-en-de"
|
| 31 |
},
|
| 32 |
"image_captioning": "Salesforce/blip-image-captioning-base",
|
| 33 |
-
"qa": "deepset/roberta-base-squad2"
|
| 34 |
}
|
| 35 |
|
| 36 |
-
@lru_cache(maxsize=
|
| 37 |
-
def
|
| 38 |
-
"""Cached model loader with error handling"""
|
| 39 |
try:
|
| 40 |
if task == "translation" and model_name:
|
| 41 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
|
@@ -43,108 +43,130 @@ def get_pipeline(task: str, model_name: str = None):
|
|
| 43 |
return pipeline("translation", model=model, tokenizer=tokenizer)
|
| 44 |
return pipeline(task, model=model_name or MODELS.get(task))
|
| 45 |
except Exception as e:
|
| 46 |
-
logger.error(f"
|
| 47 |
-
raise HTTPException(status_code=500, detail=
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
try:
|
| 54 |
-
if
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
do_sample=False
|
| 65 |
-
)
|
| 66 |
-
return {"summary": summary[0]['summary_text']}
|
| 67 |
-
except Exception as e:
|
| 68 |
-
logger.error(f"Summarization error: {str(e)}")
|
| 69 |
-
raise HTTPException(status_code=500, detail="Summarization failed")
|
| 70 |
-
|
| 71 |
-
@app.post("/answer")
|
| 72 |
-
async def answer_question(
|
| 73 |
-
question: str = Form(...),
|
| 74 |
-
context: str = Form(None),
|
| 75 |
-
file: UploadFile = File(None)
|
| 76 |
-
):
|
| 77 |
-
"""Fixed QA endpoint with proper answer extraction"""
|
| 78 |
-
try:
|
| 79 |
-
if file:
|
| 80 |
-
context = await extract_text_from_file(file)
|
| 81 |
-
elif not context:
|
| 82 |
-
raise HTTPException(status_code=400, detail="Missing context")
|
| 83 |
-
|
| 84 |
-
qa_pipeline = get_pipeline("qa")
|
| 85 |
-
result = qa_pipeline(question=question, context=context[:2000]) # Truncate long contexts
|
| 86 |
-
return {"answer": result["answer"]}
|
| 87 |
-
except Exception as e:
|
| 88 |
-
logger.error(f"QA error: {str(e)}")
|
| 89 |
-
raise HTTPException(status_code=500, detail="Question answering failed")
|
| 90 |
-
|
| 91 |
-
@app.post("/caption")
|
| 92 |
-
async def caption_image(file: UploadFile = File(...)):
|
| 93 |
-
"""Image captioning endpoint"""
|
| 94 |
-
try:
|
| 95 |
-
if file.size > 5 * 1024 * 1024: # 5MB limit
|
| 96 |
-
raise HTTPException(status_code=413, detail="File too large (max 5MB)")
|
| 97 |
-
|
| 98 |
-
image = Image.open(io.BytesIO(await file.read()))
|
| 99 |
-
if image.format not in ["JPEG", "PNG"]:
|
| 100 |
-
raise HTTPException(status_code=400, detail="Only JPEG/PNG supported")
|
| 101 |
-
|
| 102 |
-
captioner = get_pipeline("image_captioning")
|
| 103 |
-
result = captioner(image)
|
| 104 |
-
return {"caption": result[0]['generated_text']}
|
| 105 |
-
except Exception as e:
|
| 106 |
-
logger.error(f"Captioning error: {str(e)}")
|
| 107 |
-
raise HTTPException(status_code=500, detail="Image processing failed")
|
| 108 |
|
| 109 |
-
@app.post("/
|
| 110 |
-
async def
|
| 111 |
-
text: str = Form(
|
| 112 |
-
target_lang: str = Form(...),
|
| 113 |
file: UploadFile = File(None)
|
| 114 |
):
|
| 115 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 116 |
try:
|
| 117 |
-
if
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
except Exception as e:
|
| 127 |
-
logger.error(f"
|
| 128 |
-
raise HTTPException(status_code=500, detail=
|
| 129 |
|
| 130 |
-
# ---- Helper Functions ----
|
| 131 |
async def extract_text_from_file(file: UploadFile) -> str:
|
| 132 |
-
"""Extracts text from
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
|
| 149 |
@app.get("/", include_in_schema=False)
|
| 150 |
async def home():
|
|
|
|
| 1 |
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
|
| 2 |
from fastapi.staticfiles import StaticFiles
|
| 3 |
+
from fastapi.responses import RedirectResponse, JSONResponse
|
| 4 |
from transformers import pipeline, MarianMTModel, MarianTokenizer
|
| 5 |
+
from langdetect import detect, LangDetectException
|
| 6 |
from typing import Optional
|
| 7 |
import logging
|
| 8 |
from PIL import Image
|
|
|
|
| 11 |
import fitz # PyMuPDF
|
| 12 |
import pandas as pd
|
| 13 |
from functools import lru_cache
|
| 14 |
+
import re
|
| 15 |
|
| 16 |
# Configure logging
|
| 17 |
logging.basicConfig(level=logging.INFO)
|
| 18 |
logger = logging.getLogger(__name__)
|
| 19 |
|
| 20 |
+
app = FastAPI(title="Auto-Detect AI Chatbot")
|
| 21 |
|
| 22 |
# Mount static files
|
| 23 |
app.mount("/static", StaticFiles(directory="static"), name="static")
|
| 24 |
|
| 25 |
+
# Model configurations
|
| 26 |
MODELS = {
|
| 27 |
"summarization": "t5-small",
|
| 28 |
"translation": {
|
|
|
|
| 31 |
"de": "Helsinki-NLP/opus-mt-en-de"
|
| 32 |
},
|
| 33 |
"image_captioning": "Salesforce/blip-image-captioning-base",
|
| 34 |
+
"qa": "deepset/roberta-base-squad2"
|
| 35 |
}
|
| 36 |
|
| 37 |
+
@lru_cache(maxsize=4)
|
| 38 |
+
def load_model(task: str, model_name: str = None):
|
|
|
|
| 39 |
try:
|
| 40 |
if task == "translation" and model_name:
|
| 41 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
|
|
|
| 43 |
return pipeline("translation", model=model, tokenizer=tokenizer)
|
| 44 |
return pipeline(task, model=model_name or MODELS.get(task))
|
| 45 |
except Exception as e:
|
| 46 |
+
logger.error(f"Model load failed: {str(e)}")
|
| 47 |
+
raise HTTPException(status_code=500, detail="Model loading error")
|
| 48 |
|
| 49 |
+
def detect_intent(text: str = None, file: UploadFile = None) -> str:
|
| 50 |
+
"""Auto-detects user intent from input"""
|
| 51 |
+
# File-based detection
|
| 52 |
+
if file:
|
| 53 |
+
if file.content_type.startswith('image/'):
|
| 54 |
+
return "image_caption"
|
| 55 |
+
elif file.filename.endswith(('.xlsx', '.xls')):
|
| 56 |
+
return "visualize"
|
| 57 |
+
elif file.filename.endswith(('.pdf', '.docx', '.txt')):
|
| 58 |
+
return "summarize"
|
| 59 |
+
|
| 60 |
+
# Text analysis
|
| 61 |
+
if not text:
|
| 62 |
+
return "unknown"
|
| 63 |
+
|
| 64 |
+
text_lower = text.lower()
|
| 65 |
+
|
| 66 |
+
# Translation detection
|
| 67 |
+
lang_codes = ['fr', 'es', 'de', 'translate', 'traduire']
|
| 68 |
+
if any(re.search(rf'\b{lang}\b', text_lower) for lang in lang_codes):
|
| 69 |
+
return "translate"
|
| 70 |
+
|
| 71 |
+
# Question detection
|
| 72 |
+
question_words = ['what', 'when', 'why', 'how', '?', 'explain']
|
| 73 |
+
if any(word in text_lower for word in question_words):
|
| 74 |
+
return "qa"
|
| 75 |
+
|
| 76 |
+
# Language detection for non-English text
|
| 77 |
try:
|
| 78 |
+
if detect(text) != 'en' and len(text.split()) > 3:
|
| 79 |
+
return "translate"
|
| 80 |
+
except LangDetectException:
|
| 81 |
+
pass
|
| 82 |
+
|
| 83 |
+
# Default to summarization for long text
|
| 84 |
+
if len(text) > 100:
|
| 85 |
+
return "summarize"
|
| 86 |
+
|
| 87 |
+
return "unknown"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
+
@app.post("/process")
|
| 90 |
+
async def process_input(
|
| 91 |
+
text: str = Form(None),
|
|
|
|
| 92 |
file: UploadFile = File(None)
|
| 93 |
):
|
| 94 |
+
"""Unified endpoint for all processing"""
|
| 95 |
+
intent = detect_intent(text, file)
|
| 96 |
+
logger.info(f"Detected intent: {intent}")
|
| 97 |
+
|
| 98 |
try:
|
| 99 |
+
if intent == "summarize":
|
| 100 |
+
content = await extract_text_from_file(file) if file else text
|
| 101 |
+
summarizer = load_model("summarization")
|
| 102 |
+
summary = summarizer(
|
| 103 |
+
f"summarize: {content[:2000]}",
|
| 104 |
+
max_length=150,
|
| 105 |
+
min_length=30
|
| 106 |
+
)
|
| 107 |
+
return {"response": summary[0]['summary_text'], "type": "summary"}
|
| 108 |
+
|
| 109 |
+
elif intent == "translate":
|
| 110 |
+
content = await extract_text_from_file(file) if file else text
|
| 111 |
+
# Extract target language
|
| 112 |
+
target_lang = "fr" # Default
|
| 113 |
+
if text:
|
| 114 |
+
match = re.search(r'\b(fr|es|de)\b', text.lower())
|
| 115 |
+
if match:
|
| 116 |
+
target_lang = match.group(1)
|
| 117 |
+
translator = load_model("translation", MODELS["translation"][target_lang])
|
| 118 |
+
translated = translator(content[:1000])
|
| 119 |
+
return {"response": translated[0]['translation_text'], "type": "translation"}
|
| 120 |
+
|
| 121 |
+
elif intent == "qa":
|
| 122 |
+
context = await extract_text_from_file(file) if file else None
|
| 123 |
+
qa_pipeline = load_model("qa")
|
| 124 |
+
result = qa_pipeline(question=text, context=context[:2000] if context else "")
|
| 125 |
+
return {"response": result["answer"], "type": "answer"}
|
| 126 |
+
|
| 127 |
+
elif intent == "image_caption":
|
| 128 |
+
image = Image.open(io.BytesIO(await file.read()))
|
| 129 |
+
captioner = load_model("image_captioning")
|
| 130 |
+
caption = captioner(image)
|
| 131 |
+
return {"response": caption[0]['generated_text'], "type": "caption"}
|
| 132 |
+
|
| 133 |
+
elif intent == "visualize":
|
| 134 |
+
df = pd.read_excel(io.BytesIO(await file.read()))
|
| 135 |
+
code = generate_visualization_code(df, text)
|
| 136 |
+
return {"response": code, "type": "visualization_code"}
|
| 137 |
+
|
| 138 |
+
else:
|
| 139 |
+
return {"response": "Please clarify your request", "type": "clarification"}
|
| 140 |
+
|
| 141 |
except Exception as e:
|
| 142 |
+
logger.error(f"Processing error: {str(e)}")
|
| 143 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 144 |
|
|
|
|
| 145 |
async def extract_text_from_file(file: UploadFile) -> str:
|
| 146 |
+
"""Extracts text from supported files"""
|
| 147 |
+
content = await file.read()
|
| 148 |
+
if file.filename.endswith('.pdf'):
|
| 149 |
+
doc = fitz.open(stream=content, filetype="pdf")
|
| 150 |
+
return " ".join(page.get_text() for page in doc)
|
| 151 |
+
elif file.filename.endswith('.docx'):
|
| 152 |
+
doc = Document(io.BytesIO(content))
|
| 153 |
+
return "\n".join(para.text for para in doc.paragraphs)
|
| 154 |
+
elif file.filename.endswith('.txt'):
|
| 155 |
+
return content.decode('utf-8')
|
| 156 |
+
raise HTTPException(status_code=400, detail="Unsupported file type")
|
| 157 |
+
|
| 158 |
+
def generate_visualization_code(df: pd.DataFrame, request: str) -> str:
|
| 159 |
+
"""Generates Python visualization code"""
|
| 160 |
+
if "bar" in request.lower():
|
| 161 |
+
return f"""import matplotlib.pyplot as plt
|
| 162 |
+
plt.bar(df['{df.columns[0]}'], df['{df.columns[1]}'])
|
| 163 |
+
plt.title('Bar Chart')
|
| 164 |
+
plt.show()"""
|
| 165 |
+
else:
|
| 166 |
+
return f"""import seaborn as sns
|
| 167 |
+
sns.pairplot(df)
|
| 168 |
+
plt.title('Data Visualization')
|
| 169 |
+
plt.show()"""
|
| 170 |
|
| 171 |
@app.get("/", include_in_schema=False)
|
| 172 |
async def home():
|