Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import DistilBertTokenizerFast, DistilBertForQuestionAnswering
|
2 |
+
import json
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
model_name = "distilbert-base-cased"
|
6 |
+
tokenizer = DistilBertTokenizerFast.from_pretrained(model_name)
|
7 |
+
model = DistilBertForQuestionAnswering.from_pretrained(model_name)
|
8 |
+
|
9 |
+
def format_response(start_index, end_index, raw_answer):
|
10 |
+
answer_tokens = tokenizer.convert_tokens_to_string([tokenizer.convert_ids_to_tokens(i)[0] for i in range(start_index, end_index+1)])
|
11 |
+
return {'answer': answer_tokens.strip(), 'score': None}
|
12 |
+
|
13 |
+
def get_answers(question, context):
|
14 |
+
inputs = tokenizer.encode_plus(question, context, return_tensors="pt")
|
15 |
+
start_scores, end_scores = model(**inputs).values()
|
16 |
+
start_index = torch.argmax(start_scores)
|
17 |
+
end_index = torch.argmax(end_scores) + 1
|
18 |
+
formatted_answer = format_response(start_index, end_index - 1, context[start_index:end_index].tolist())
|
19 |
+
return formatted_answer
|
20 |
+
|
21 |
+
def interactive():
|
22 |
+
print("Hi! I am a simple AI chatbot built using Hugging Face.")
|
23 |
+
while True:
|
24 |
+
query = input("\nAsk me something or type 'quit' to exit:\n").lower().strip()
|
25 |
+
if query == "quit":
|
26 |
+
break
|
27 |
+
|
28 |
+
try:
|
29 |
+
# Add some basic context here; replace with your own dataset later
|
30 |
+
context = "The capital of France is Paris."
|
31 |
+
response = get_answers(query, context)
|
32 |
+
print(f"\n{json.dumps(response)}")
|
33 |
+
except Exception as e:
|
34 |
+
print(f"Error occurred: {str(e)}")
|
35 |
+
|
36 |
+
if __name__ == "__main__":
|
37 |
+
interactive()
|