Spaces:
Sleeping
Sleeping
Tracy André
commited on
Commit
·
6df7dd5
1
Parent(s):
5ddad7c
updated
Browse files- mcp_server.py +232 -32
- test_improved_interface.py +44 -0
mcp_server.py
CHANGED
|
@@ -90,7 +90,23 @@ class WeedPressureAnalyzer:
|
|
| 90 |
analyzer = WeedPressureAnalyzer()
|
| 91 |
|
| 92 |
def analyze_herbicide_trends(year_start, year_end, plot_filter):
|
| 93 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
try:
|
| 95 |
# Créer la liste des années à partir des deux sliders
|
| 96 |
start_year = int(year_start)
|
|
@@ -181,7 +197,25 @@ def analyze_herbicide_trends(year_start, year_end, plot_filter):
|
|
| 181 |
return None, error_msg
|
| 182 |
|
| 183 |
def predict_future_weed_pressure():
|
| 184 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
try:
|
| 186 |
predictions = analyzer.predict_weed_pressure()
|
| 187 |
|
|
@@ -215,7 +249,29 @@ def predict_future_weed_pressure():
|
|
| 215 |
return None, f"Erreur: {str(e)}"
|
| 216 |
|
| 217 |
def recommend_sensitive_crop_plots():
|
| 218 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
try:
|
| 220 |
predictions = analyzer.predict_weed_pressure()
|
| 221 |
|
|
@@ -253,34 +309,90 @@ def recommend_sensitive_crop_plots():
|
|
| 253 |
except Exception as e:
|
| 254 |
return None, f"Erreur: {str(e)}"
|
| 255 |
|
| 256 |
-
def
|
| 257 |
-
"""
|
| 258 |
-
|
| 259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
|
|
|
| 265 |
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
|
|
|
|
|
|
| 270 |
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
• Extraits végétaux (huiles essentielles)
|
| 274 |
-
• Bioherbicides à base de champignons
|
| 275 |
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
|
| 285 |
def get_available_plots():
|
| 286 |
"""Get available plots."""
|
|
@@ -292,6 +404,26 @@ def get_available_plots():
|
|
| 292 |
print(f"Erreur lors du chargement des parcelles: {e}")
|
| 293 |
return ["Toutes", "Champ ferme Bas", "Etang Milieu", "Lann Chebot"]
|
| 294 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
# Create Gradio Interface
|
| 296 |
def create_mcp_interface():
|
| 297 |
with gr.Blocks(title="🚜 Analyse Pression Adventices", theme=gr.themes.Soft()) as demo:
|
|
@@ -304,6 +436,14 @@ def create_mcp_interface():
|
|
| 304 |
with gr.Tabs():
|
| 305 |
with gr.Tab("📈 Analyse Tendances"):
|
| 306 |
gr.Markdown("### Analyser l'évolution de l'IFT herbicides par parcelle et période")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 307 |
|
| 308 |
with gr.Row():
|
| 309 |
with gr.Column():
|
|
@@ -343,6 +483,18 @@ def create_mcp_interface():
|
|
| 343 |
)
|
| 344 |
|
| 345 |
with gr.Tab("🔮 Prédictions"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
predict_btn = gr.Button("🎯 Prédire 2025-2027", variant="primary")
|
| 347 |
|
| 348 |
with gr.Row():
|
|
@@ -352,6 +504,15 @@ def create_mcp_interface():
|
|
| 352 |
predict_btn.click(predict_future_weed_pressure, outputs=[predictions_plot, predictions_summary])
|
| 353 |
|
| 354 |
with gr.Tab("🌱 Recommandations"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
recommend_btn = gr.Button("🎯 Recommander Parcelles", variant="primary")
|
| 356 |
|
| 357 |
with gr.Row():
|
|
@@ -360,12 +521,51 @@ def create_mcp_interface():
|
|
| 360 |
|
| 361 |
recommend_btn.click(recommend_sensitive_crop_plots, outputs=[recommendations_plot, recommendations_summary])
|
| 362 |
|
| 363 |
-
with gr.Tab("
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 367 |
|
| 368 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 369 |
|
| 370 |
return demo
|
| 371 |
|
|
|
|
| 90 |
analyzer = WeedPressureAnalyzer()
|
| 91 |
|
| 92 |
def analyze_herbicide_trends(year_start, year_end, plot_filter):
|
| 93 |
+
"""
|
| 94 |
+
Analyze herbicide usage trends over time by calculating IFT (Treatment Frequency Index).
|
| 95 |
+
|
| 96 |
+
This tool calculates the IFT (Indice de Fréquence de Traitement) for herbicides, which represents
|
| 97 |
+
the number of herbicide applications per hectare. It provides visualizations and statistics to
|
| 98 |
+
understand weed pressure evolution over time.
|
| 99 |
+
|
| 100 |
+
Args:
|
| 101 |
+
year_start (int): Starting year for analysis (2014-2025)
|
| 102 |
+
year_end (int): Ending year for analysis (2014-2025)
|
| 103 |
+
plot_filter (str): Specific plot name or "Toutes" for all plots
|
| 104 |
+
|
| 105 |
+
Returns:
|
| 106 |
+
tuple: (plotly_figure, markdown_summary)
|
| 107 |
+
- plotly_figure: Interactive line chart showing IFT evolution by plot and year
|
| 108 |
+
- markdown_summary: Detailed statistics including mean/max IFT, risk distribution
|
| 109 |
+
"""
|
| 110 |
try:
|
| 111 |
# Créer la liste des années à partir des deux sliders
|
| 112 |
start_year = int(year_start)
|
|
|
|
| 197 |
return None, error_msg
|
| 198 |
|
| 199 |
def predict_future_weed_pressure():
|
| 200 |
+
"""
|
| 201 |
+
Predict weed pressure for the next 3 years (2025-2027) using linear regression on historical IFT data.
|
| 202 |
+
|
| 203 |
+
This tool uses historical herbicide IFT data to predict future weed pressure. It applies linear
|
| 204 |
+
regression to each plot's IFT evolution over time and extrapolates to 2025-2027. Risk levels are
|
| 205 |
+
classified as: Faible (IFT < 1.0), Modéré (1.0 ≤ IFT < 2.0), Élevé (IFT ≥ 2.0).
|
| 206 |
+
|
| 207 |
+
Prediction Method:
|
| 208 |
+
1. Calculate historical IFT for each plot/year combination
|
| 209 |
+
2. Apply linear regression: IFT = slope × year + intercept
|
| 210 |
+
3. Extrapolate to target years 2025-2027
|
| 211 |
+
4. Classify risk levels based on predicted IFT values
|
| 212 |
+
5. Include recent crop history and average historical IFT for context
|
| 213 |
+
|
| 214 |
+
Returns:
|
| 215 |
+
tuple: (plotly_figure, markdown_summary)
|
| 216 |
+
- plotly_figure: Bar chart showing predicted IFT by plot and year with risk color coding
|
| 217 |
+
- markdown_summary: Risk distribution statistics and interpretation
|
| 218 |
+
"""
|
| 219 |
try:
|
| 220 |
predictions = analyzer.predict_weed_pressure()
|
| 221 |
|
|
|
|
| 249 |
return None, f"Erreur: {str(e)}"
|
| 250 |
|
| 251 |
def recommend_sensitive_crop_plots():
|
| 252 |
+
"""
|
| 253 |
+
Recommend plots suitable for sensitive crops (pois, haricot) based on predicted weed pressure.
|
| 254 |
+
|
| 255 |
+
This tool identifies plots with low predicted weed pressure (IFT < 1.0) and calculates a
|
| 256 |
+
recommendation score to rank them for sensitive crop cultivation.
|
| 257 |
+
|
| 258 |
+
Recommendation Method:
|
| 259 |
+
1. Get predicted IFT for 2025-2027 from predict_future_weed_pressure()
|
| 260 |
+
2. Filter plots with risk_level = "Faible" (IFT < 1.0)
|
| 261 |
+
3. Calculate recommendation_score = 100 - (predicted_ift × 30)
|
| 262 |
+
4. Sort plots by recommendation score (higher = better)
|
| 263 |
+
5. Include recent crop history and historical average IFT for context
|
| 264 |
+
|
| 265 |
+
Recommendation Score:
|
| 266 |
+
- 100-70: Excellent for sensitive crops
|
| 267 |
+
- 70-50: Good for sensitive crops with monitoring
|
| 268 |
+
- 50-0: Requires careful management
|
| 269 |
+
|
| 270 |
+
Returns:
|
| 271 |
+
tuple: (plotly_figure, markdown_summary)
|
| 272 |
+
- plotly_figure: Scatter plot showing predicted IFT vs recommendation score
|
| 273 |
+
- markdown_summary: Top recommended plots with scores and criteria
|
| 274 |
+
"""
|
| 275 |
try:
|
| 276 |
predictions = analyzer.predict_weed_pressure()
|
| 277 |
|
|
|
|
| 309 |
except Exception as e:
|
| 310 |
return None, f"Erreur: {str(e)}"
|
| 311 |
|
| 312 |
+
def explore_raw_data(year_start, year_end, plot_filter, crop_filter, intervention_filter):
|
| 313 |
+
"""
|
| 314 |
+
Explore raw agricultural intervention data with filtering capabilities.
|
| 315 |
+
|
| 316 |
+
This tool provides access to the raw dataset from the Station Expérimentale de Kerguéhennec
|
| 317 |
+
(2014-2025) with filtering options to explore specific subsets of data.
|
| 318 |
+
|
| 319 |
+
Args:
|
| 320 |
+
year_start (int): Starting year for filtering (2014-2025)
|
| 321 |
+
year_end (int): Ending year for filtering (2014-2025)
|
| 322 |
+
plot_filter (str): Specific plot name or "Toutes" for all plots
|
| 323 |
+
crop_filter (str): Specific crop type or "Toutes" for all crops
|
| 324 |
+
intervention_filter (str): Specific intervention type or "Toutes" for all interventions
|
| 325 |
+
|
| 326 |
+
Returns:
|
| 327 |
+
tuple: (plotly_figure, markdown_summary)
|
| 328 |
+
- plotly_figure: Interactive data table or visualization
|
| 329 |
+
- markdown_summary: Data summary with statistics and filtering info
|
| 330 |
+
"""
|
| 331 |
+
try:
|
| 332 |
+
# Charger les données
|
| 333 |
+
df = analyzer.load_data()
|
| 334 |
+
|
| 335 |
+
# Appliquer les filtres
|
| 336 |
+
if year_start and year_end:
|
| 337 |
+
df = df[(df['year'] >= year_start) & (df['year'] <= year_end)]
|
| 338 |
+
|
| 339 |
+
if plot_filter and plot_filter != "Toutes":
|
| 340 |
+
df = df[df['plot_name'] == plot_filter]
|
| 341 |
+
|
| 342 |
+
if crop_filter and crop_filter != "Toutes":
|
| 343 |
+
df = df[df['crop_type'] == crop_filter]
|
| 344 |
+
|
| 345 |
+
if intervention_filter and intervention_filter != "Toutes":
|
| 346 |
+
df = df[df['intervention_type'] == intervention_filter]
|
| 347 |
+
|
| 348 |
+
if len(df) == 0:
|
| 349 |
+
return None, "Aucune donnée trouvée avec les filtres sélectionnés."
|
| 350 |
+
|
| 351 |
+
# Créer un résumé des données
|
| 352 |
+
summary = f"""
|
| 353 |
+
📊 **Exploration des Données Brutes**
|
| 354 |
|
| 355 |
+
**Filtres appliqués:**
|
| 356 |
+
- Période: {year_start}-{year_end}
|
| 357 |
+
- Parcelle: {plot_filter}
|
| 358 |
+
- Culture: {crop_filter}
|
| 359 |
+
- Type d'intervention: {intervention_filter}
|
| 360 |
|
| 361 |
+
**Statistiques:**
|
| 362 |
+
- Nombre total d'enregistrements: {len(df):,}
|
| 363 |
+
- Nombre de parcelles: {df['plot_name'].nunique()}
|
| 364 |
+
- Nombre d'années: {df['year'].nunique()}
|
| 365 |
+
- Types de cultures: {df['crop_type'].nunique()}
|
| 366 |
+
- Types d'interventions: {df['intervention_type'].nunique()}
|
| 367 |
|
| 368 |
+
**Répartition par année:**
|
| 369 |
+
{df['year'].value_counts().sort_index().to_string()}
|
|
|
|
|
|
|
| 370 |
|
| 371 |
+
**Top 10 parcelles:**
|
| 372 |
+
{df['plot_name'].value_counts().head(10).to_string()}
|
| 373 |
+
|
| 374 |
+
**Top 10 cultures:**
|
| 375 |
+
{df['crop_type'].value_counts().head(10).to_string()}
|
| 376 |
+
|
| 377 |
+
**Top 10 interventions:**
|
| 378 |
+
{df['intervention_type'].value_counts().head(10).to_string()}
|
| 379 |
+
"""
|
| 380 |
+
|
| 381 |
+
# Créer une visualisation des données
|
| 382 |
+
if len(df) > 0:
|
| 383 |
+
# Graphique des interventions par année
|
| 384 |
+
yearly_counts = df.groupby('year').size().reset_index(name='count')
|
| 385 |
+
fig = px.bar(yearly_counts, x='year', y='count',
|
| 386 |
+
title=f'Nombre d\'interventions par année ({year_start}-{year_end})',
|
| 387 |
+
labels={'count': 'Nombre d\'interventions', 'year': 'Année'})
|
| 388 |
+
|
| 389 |
+
fig.update_layout(height=400)
|
| 390 |
+
return fig, summary
|
| 391 |
+
else:
|
| 392 |
+
return None, summary
|
| 393 |
+
|
| 394 |
+
except Exception as e:
|
| 395 |
+
return None, f"Erreur lors de l'exploration des données: {str(e)}"
|
| 396 |
|
| 397 |
def get_available_plots():
|
| 398 |
"""Get available plots."""
|
|
|
|
| 404 |
print(f"Erreur lors du chargement des parcelles: {e}")
|
| 405 |
return ["Toutes", "Champ ferme Bas", "Etang Milieu", "Lann Chebot"]
|
| 406 |
|
| 407 |
+
def get_available_crops():
|
| 408 |
+
"""Get available crop types."""
|
| 409 |
+
try:
|
| 410 |
+
df = analyzer.load_data()
|
| 411 |
+
crops = sorted(df['crop_type'].dropna().unique().tolist())
|
| 412 |
+
return ["Toutes"] + crops
|
| 413 |
+
except Exception as e:
|
| 414 |
+
print(f"Erreur lors du chargement des cultures: {e}")
|
| 415 |
+
return ["Toutes", "blé tendre hiver", "pois de conserve", "haricot mange-tout industrie"]
|
| 416 |
+
|
| 417 |
+
def get_available_interventions():
|
| 418 |
+
"""Get available intervention types."""
|
| 419 |
+
try:
|
| 420 |
+
df = analyzer.load_data()
|
| 421 |
+
interventions = sorted(df['intervention_type'].dropna().unique().tolist())
|
| 422 |
+
return ["Toutes"] + interventions
|
| 423 |
+
except Exception as e:
|
| 424 |
+
print(f"Erreur lors du chargement des interventions: {e}")
|
| 425 |
+
return ["Toutes", "Traitement et protection des cultures", "Fertilisation", "Travail et Entretien du sol"]
|
| 426 |
+
|
| 427 |
# Create Gradio Interface
|
| 428 |
def create_mcp_interface():
|
| 429 |
with gr.Blocks(title="🚜 Analyse Pression Adventices", theme=gr.themes.Soft()) as demo:
|
|
|
|
| 436 |
with gr.Tabs():
|
| 437 |
with gr.Tab("📈 Analyse Tendances"):
|
| 438 |
gr.Markdown("### Analyser l'évolution de l'IFT herbicides par parcelle et période")
|
| 439 |
+
gr.Markdown("""
|
| 440 |
+
**Calcul de l'IFT (Indice de Fréquence de Traitement) :**
|
| 441 |
+
- IFT = Nombre d'applications herbicides / Surface de la parcelle
|
| 442 |
+
- Seuils d'interprétation :
|
| 443 |
+
- 🟢 Faible : IFT < 1.0 (pression adventices faible)
|
| 444 |
+
- 🟡 Modéré : 1.0 ≤ IFT < 2.0 (pression modérée)
|
| 445 |
+
- 🔴 Élevé : IFT ≥ 2.0 (pression élevée)
|
| 446 |
+
""")
|
| 447 |
|
| 448 |
with gr.Row():
|
| 449 |
with gr.Column():
|
|
|
|
| 483 |
)
|
| 484 |
|
| 485 |
with gr.Tab("🔮 Prédictions"):
|
| 486 |
+
gr.Markdown("### Prédiction de la pression adventices 2025-2027")
|
| 487 |
+
gr.Markdown("""
|
| 488 |
+
**Méthode de prédiction :**
|
| 489 |
+
1. Calcul de l'IFT historique par parcelle et année
|
| 490 |
+
2. Régression linéaire : IFT = pente × année + ordonnée_origine
|
| 491 |
+
3. Extrapolation aux années 2025-2027
|
| 492 |
+
4. Classification des risques :
|
| 493 |
+
- 🟢 Faible : IFT < 1.0
|
| 494 |
+
- 🟡 Modéré : 1.0 ≤ IFT < 2.0
|
| 495 |
+
- 🔴 Élevé : IFT ≥ 2.0
|
| 496 |
+
""")
|
| 497 |
+
|
| 498 |
predict_btn = gr.Button("🎯 Prédire 2025-2027", variant="primary")
|
| 499 |
|
| 500 |
with gr.Row():
|
|
|
|
| 504 |
predict_btn.click(predict_future_weed_pressure, outputs=[predictions_plot, predictions_summary])
|
| 505 |
|
| 506 |
with gr.Tab("🌱 Recommandations"):
|
| 507 |
+
gr.Markdown("### Recommandations pour cultures sensibles (pois, haricot)")
|
| 508 |
+
gr.Markdown("""
|
| 509 |
+
**Méthode de recommandation :**
|
| 510 |
+
1. Prédiction IFT 2025-2027 par régression linéaire
|
| 511 |
+
2. Filtrage des parcelles à faible risque (IFT < 1.0)
|
| 512 |
+
3. Calcul du score de recommandation : 100 - (IFT_prédit × 30)
|
| 513 |
+
4. Classement par score (plus élevé = meilleur)
|
| 514 |
+
""")
|
| 515 |
+
|
| 516 |
recommend_btn = gr.Button("🎯 Recommander Parcelles", variant="primary")
|
| 517 |
|
| 518 |
with gr.Row():
|
|
|
|
| 521 |
|
| 522 |
recommend_btn.click(recommend_sensitive_crop_plots, outputs=[recommendations_plot, recommendations_summary])
|
| 523 |
|
| 524 |
+
with gr.Tab("📊 Exploration Données"):
|
| 525 |
+
gr.Markdown("### Explorer les données brutes de la Station Expérimentale de Kerguéhennec")
|
| 526 |
+
|
| 527 |
+
with gr.Row():
|
| 528 |
+
with gr.Column():
|
| 529 |
+
data_year_start = gr.Slider(
|
| 530 |
+
minimum=2014,
|
| 531 |
+
maximum=2025,
|
| 532 |
+
value=2020,
|
| 533 |
+
step=1,
|
| 534 |
+
label="Année de début"
|
| 535 |
+
)
|
| 536 |
+
data_year_end = gr.Slider(
|
| 537 |
+
minimum=2014,
|
| 538 |
+
maximum=2025,
|
| 539 |
+
value=2025,
|
| 540 |
+
step=1,
|
| 541 |
+
label="Année de fin"
|
| 542 |
+
)
|
| 543 |
+
data_plot_filter = gr.Dropdown(
|
| 544 |
+
choices=get_available_plots(),
|
| 545 |
+
value="Toutes",
|
| 546 |
+
label="Filtrer par parcelle"
|
| 547 |
+
)
|
| 548 |
+
data_crop_filter = gr.Dropdown(
|
| 549 |
+
choices=get_available_crops(),
|
| 550 |
+
value="Toutes",
|
| 551 |
+
label="Filtrer par culture"
|
| 552 |
+
)
|
| 553 |
+
data_intervention_filter = gr.Dropdown(
|
| 554 |
+
choices=get_available_interventions(),
|
| 555 |
+
value="Toutes",
|
| 556 |
+
label="Filtrer par type d'intervention"
|
| 557 |
+
)
|
| 558 |
+
explore_btn = gr.Button("🔍 Explorer les Données", variant="primary")
|
| 559 |
+
|
| 560 |
+
with gr.Row():
|
| 561 |
+
data_plot = gr.Plot()
|
| 562 |
+
data_summary = gr.Markdown()
|
| 563 |
|
| 564 |
+
explore_btn.click(
|
| 565 |
+
explore_raw_data,
|
| 566 |
+
inputs=[data_year_start, data_year_end, data_plot_filter, data_crop_filter, data_intervention_filter],
|
| 567 |
+
outputs=[data_plot, data_summary]
|
| 568 |
+
)
|
| 569 |
|
| 570 |
return demo
|
| 571 |
|
test_improved_interface.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Test de l'interface améliorée
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from mcp_server import analyze_herbicide_trends, predict_future_weed_pressure, recommend_sensitive_crop_plots, explore_raw_data
|
| 6 |
+
|
| 7 |
+
def test_improved_functions():
|
| 8 |
+
"""Test des fonctions améliorées"""
|
| 9 |
+
print("🧪 Test de l'interface améliorée...")
|
| 10 |
+
|
| 11 |
+
# Test 1: Analyse tendances
|
| 12 |
+
print("\nTest 1: Analyse tendances")
|
| 13 |
+
fig, summary = analyze_herbicide_trends(2020, 2024, "Toutes")
|
| 14 |
+
if fig is not None:
|
| 15 |
+
print("✅ Analyse tendances fonctionne")
|
| 16 |
+
else:
|
| 17 |
+
print("❌ Erreur:", summary)
|
| 18 |
+
|
| 19 |
+
# Test 2: Prédictions
|
| 20 |
+
print("\nTest 2: Prédictions")
|
| 21 |
+
fig, summary = predict_future_weed_pressure()
|
| 22 |
+
if fig is not None:
|
| 23 |
+
print("✅ Prédictions fonctionnent")
|
| 24 |
+
else:
|
| 25 |
+
print("❌ Erreur:", summary)
|
| 26 |
+
|
| 27 |
+
# Test 3: Recommandations
|
| 28 |
+
print("\nTest 3: Recommandations")
|
| 29 |
+
fig, summary = recommend_sensitive_crop_plots()
|
| 30 |
+
if fig is not None:
|
| 31 |
+
print("✅ Recommandations fonctionnent")
|
| 32 |
+
else:
|
| 33 |
+
print("❌ Erreur:", summary)
|
| 34 |
+
|
| 35 |
+
# Test 4: Exploration données
|
| 36 |
+
print("\nTest 4: Exploration données")
|
| 37 |
+
fig, summary = explore_raw_data(2020, 2024, "Toutes", "Toutes", "Toutes")
|
| 38 |
+
if fig is not None:
|
| 39 |
+
print("✅ Exploration données fonctionne")
|
| 40 |
+
else:
|
| 41 |
+
print("❌ Erreur:", summary)
|
| 42 |
+
|
| 43 |
+
if __name__ == "__main__":
|
| 44 |
+
test_improved_functions()
|