Hack90 commited on
Commit
12ab087
·
verified ·
1 Parent(s): bf2a89b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -983,7 +983,7 @@ with ui.navset_card_tab(id="tab"):
983
  "Select Param Type:",
984
  ["14", "31", "70", "160"],
985
  multiple=True,
986
- selected=None
987
  )
988
  ui.input_selectize(
989
  "model_type",
@@ -1009,15 +1009,15 @@ with ui.navset_card_tab(id="tab"):
1009
  for param_type in param_types:
1010
  for loss_type in loss_types:
1011
  for model_type in model_types:
1012
- y = df[df['param_type'] ==param_type & df['loss_type'] == loss_type & df['model_type'] == model_type]['loss'].dropna().astype('float', errors = 'ignore').dropna().values
1013
  f = interp1d(np.linspace(0, 1, len(y)), y)
1014
  loss_rates.append(f(x))
1015
- labels.append(param_type +'_'+loss_type +'_'+model_type)
1016
  fig, ax = plt.subplots()
1017
  for i, loss_rate in enumerate(loss_rates):
1018
  ax.plot(x, loss_rate, label=labels[i])
1019
  ax.legend()
1020
- ax.set_title(f'Loss rates for a {type} parameter model across context windows')
1021
  ax.set_xlabel('Training steps')
1022
  ax.set_ylabel('Loss rate')
1023
  return fig
 
983
  "Select Param Type:",
984
  ["14", "31", "70", "160"],
985
  multiple=True,
986
+ selected=["14"]
987
  )
988
  ui.input_selectize(
989
  "model_type",
 
1009
  for param_type in param_types:
1010
  for loss_type in loss_types:
1011
  for model_type in model_types:
1012
+ y = df[df['param_type'] ==param_type && df['loss_type'] == loss_type && df['model_type'] == model_type]['loss'].dropna().astype('float', errors = 'ignore').dropna().values
1013
  f = interp1d(np.linspace(0, 1, len(y)), y)
1014
  loss_rates.append(f(x))
1015
+ labels.append(str(param_type) +'_'+loss_type +'_'+model_type)
1016
  fig, ax = plt.subplots()
1017
  for i, loss_rate in enumerate(loss_rates):
1018
  ax.plot(x, loss_rate, label=labels[i])
1019
  ax.legend()
1020
+ # ax.set_title(f'Loss rates for a parameter model across context windows')
1021
  ax.set_xlabel('Training steps')
1022
  ax.set_ylabel('Loss rate')
1023
  return fig