Habieb143 commited on
Commit
b13308e
1 Parent(s): 5796c5f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -35
app.py CHANGED
@@ -1,43 +1,50 @@
 
1
  import streamlit as st
2
- import pandas as pd
3
- from transformers import pipeline, AutoTokenizer, AutoModelForQuestionAnswering
4
 
5
  @st.cache(allow_output_mutation=True)
6
  def load_qa_model():
7
- model_name = "google/mobilebert-uncased"
8
- tokenizer = AutoTokenizer.from_pretrained(model_name)
9
  model = AutoModelForQuestionAnswering.from_pretrained(model_name)
10
- qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
11
- return qa_pipeline
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
  qa = load_qa_model()
14
 
15
- def process_batch(data):
16
- results = []
17
- for index, row in data.iterrows():
18
- answer = qa(question=row['Question'], context=row['Article'])
19
- results.append({
20
- 'Question': row['Question'],
21
- 'Article': row['Article'],
22
- 'Answer': answer['answer'],
23
- 'Score': answer['score']
24
- })
25
- return results
26
-
27
- st.title("Batch Question Answering App")
28
-
29
- uploaded_file = st.file_uploader("Upload a CSV file", type="csv")
30
-
31
- if uploaded_file is not None:
32
- data = pd.read_csv(uploaded_file)
33
-
34
- if st.button("Process Batch"):
35
- with st.spinner("Processing Batch..."):
36
- results = process_batch(data)
37
- st.write("Batch Processing Results:")
38
- for result in results:
39
- st.write("Question:", result['Question'])
40
- st.write("Article:", result['Article'])
41
- st.write("Answer:", result['Answer'])
42
- st.write("Score:", result['Score'])
43
- st.write("------")
 
1
+
2
  import streamlit as st
3
+ from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer
 
4
 
5
  @st.cache(allow_output_mutation=True)
6
  def load_qa_model():
7
+ model_name = "mrm8488/mobilebert-uncased-finetuned-squadv2"
 
8
  model = AutoModelForQuestionAnswering.from_pretrained(model_name)
9
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
10
+ qa = pipeline("question-answering", model=model, tokenizer=tokenizer)
11
+ return qa
12
+
13
+ def preprocess_text(text):
14
+ # Remove special characters and punctuation
15
+ text = re.sub(r'[^a-zA-Z0-9\s]', '', text)
16
+ # Convert to lowercase
17
+ text = text.lower()
18
+ return text
19
+
20
+ def format_answer(answer):
21
+ # Add answer formatting logic here
22
+ # For example, add bold formatting
23
+ return f**{answer}**
24
+
25
+ def get_answers(qa, question, text, max, min, do_sample):
26
+ try:
27
+ answers = qa(question=question, context=text, max_answer_len=max, min_answer_len=min, do_sample=do_sample)
28
+ return format_answer(answers['answer'])
29
+ except Exception as e:
30
+ st.error(f"Error: {str(e)}")
31
 
32
  qa = load_qa_model()
33
 
34
+ st.title("Ask Questions about your Text")
35
+ sentence = st.text_area('Please paste your article :', height=30)
36
+ question = st.text_input("Questions from this article?")
37
+ button = st.button("Get me Answers")
38
+
39
+ with st.sidebar:
40
+ max = st.slider('Select max answer length', 50, 500, step=10, value=150)
41
+ min = st.slider('Select min answer length', 10, 450, step=10, value=50)
42
+ do_sample = st.checkbox("Do sample", value=False)
43
+
44
+ if button and sentence and question:
45
+ with st.spinner("Discovering Answers.."):
46
+ text = preprocess_text(sentence)
47
+ answer = get_answers(qa, question, text, max, min, do_sample)
48
+ st.write(answer)
49
+ else:
50
+ st.error("Please enter a question and text!")