ShaderCoder / app.py
Vipitis's picture
more tree functions
27e63ab
raw
history blame
22.1 kB
import gradio as gr
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import datasets
import asyncio
import numpy as np
import torch
from threading import Thread
from utils.tree_utils import parse_functions, get_docstrings, grab_before_comments, line_chr2char, node_str_idx
from utils.html_utils import make_iframe, construct_embed
PIPE = None
intro_text = """
# Welcome to the interactive shadercoding demo.
This gives you access to a filtered version of the [Shadertoys](https://huggingface.co/datasets/Vipitis/Shadertoys) dataset, only shaders that consist of a single pass are available.
And then lets you use code generation models to make alterations to part of the shadercode.
## How To Use:
1. Load any Model for [`text-generation`](https://huggingface.co/models?pipeline_tag=text-generation) and hit ENTER.
2. Use the slider to sample a shader from the dataset.
- The original shader will be embedding on the left, click on title to get to the source.
- The shadercode will be displayed on the right, this is interactive.
- A preview of the currently displayed shadercode will be displayed on the lower left. (hover to advance time)
3. use the dropdown to select a function to modify.
4. press either button to make modifications to that function
5. you can also edit the code manually.
"""
outro_text ="""
## Models to try (look at [ShaderEval](https://huggingface.co/spaces/Vipitis/ShaderEval) for an indication of how helpful they will be):
- [gpt2](https://huggingface.co/gpt2) baseline for language models, really struggles with shadercode.
- [bigscience/bloom-1b1](https://huggingface.co/bigscience/bloom-1b1) a newer and larger freely available model. Does understand a big of code.
- [codeparrot/codeparrot-small](https://huggingface.co/codeparrot/codeparrot-small) a model trained on code, but not on shadercode. Manages to graps the patterns.
- [salesforce/codegen-2B-multi](https://huggingface.co/salesforce/codegen-2B-multi) a larger model that indicates some potential.
- [bigcode/santacoder](https://huggingface.co/bigcode/santacoder) a model trained on subset of [TheStack](https://huggingface.co/datasets/bigcode/the-stack), struggles with shadercode.
- [Vipitis/santacoder-finetuned-the-stack-glsl](https://huggingface.co/Vipitis/santacoder-finetuned-the-stack-glsl) fine-tuned by me on the glsl subset of [TheStack](https://huggingface.co/datasets/bigcode/the-stack), is an improvement.
- [Vipitis/santacoder-finetuned-Shadertoys](https://huggingface.co/Vipitis/santacoder-finetuned-Shadertoys) fine-tuned by me on whole shaders from [Shadertoys](https://huggingface.co/datasets/Vipitis/Shadertoys). Does overfit quite a bit with greedy decoding.
- [Vipitis/santacoder-finetuned-Shadertoys-fine](https://huggingface.co/Vipitis/santacoder-finetuned-Shadertoys-fine) fine-tuned by me just functions from [Shadertoys-fine](https://huggingface.co/datasets/Vipitis/Shadertoys-fine). Memorizes the exact function about half the time.
- [bigcode/starcoder](https://huggingface.co/bigcode/starcoder) a very large model which I haven't tried yet.
- **any other model you want to**
## TODO (feel free to contribute with a [Pull-Request](https://huggingface.co/Vipitis/santacoder-finetuned-the-stack-glsl/discussions?status=open&type=pull_request)):
- [x] use embedded Shadertoy for reference/attribution (done, but some errors)
- [~] working render implementation on CPU only space (as webgl via webglfundamentals, ccs needs fixing for iframe (or hijack Shadertoy iframe))
- [~] generate variations of return statements [ShaderEval task1](https://huggingface.co/spaces/Vipitis/ShaderEval) (needs to be reworked using the other parts)
- [x] generate whole functions (seems to work quite well)
- [] dropdown for model selection (from curated list or all supported models?)
- [] generation history stating which function and orig/generated returns. (use State ??). do it as comments in the code?
- [~] display errros/issues to the user (raise gr.Error could be one idea, but highlighting in the code would be awesome) currently adds a comment to the code.
- [~] generate whole shaders (via prompts guidance, recursive from errors) - prompt context is in progress.
- [x] accordion with generation parameters (as pipeline_kwargs?) look up starcoder playround and take "inspiration" from there (implemented for both buttons, untested)
- [] support FIM task for better model context
- [x] include some context for prompt (title, comments before a functions) - now takes all comments directly before a function as well as all comments at the beginning inside a function. (misses comments between argument list and body)
- [] gradio examples
- [] use GPU if available, respect memory restrictions.
- [x] stream model generation (maybe in a new window?) - janky solution and only sometimes hangs up
- [] 2nd iFrame needs a lot of fixing (I am not a web developer, need help) BUG:background is white, so colors are wrong. Shadertoy uses black background (or we ignore alpha).
- [] (optional) filtering the dataset by license?
### Notes:
- this is meant as a resource to show code generation for a "creative" task.
- the goal is not to not replace shader artists, but aims to be an assistant instead.
- the space still lacks quite a lot of features, but will continue to evolve.
- this demo can be useful to sannity check evaluation results, where the academic numbers are made.
- If you create a remix with these tools, please attribute the original creator of your starting point when sharing the results. (And perhaps share in the [discussion tab](https://huggingface.co/Vipitis/santacoder-finetuned-the-stack-glsl/discussions?status=open&type=discussion) too)
"""
new_shadertoy_code = """void mainImage( out vec4 fragColor, in vec2 fragCoord )
{
// touch the slider to load a shader from the dataset or start coding from here.
vec2 uv = fragCoord/iResolution.xy;
vec3 col = 0.5 + 0.5*cos(iTime+uv.xyx+vec3(0,2,4));
fragColor = vec4(col,1.0);
}"""
def grab_sample(sample_idx):
sample_pass = all_single_passes[sample_idx]
sample_code = sample_pass["code"]
sample_source = sample_pass["source"]
sample_title = sample_pass["title"]
sample_auhtor = sample_pass["author"]
source_iframe = construct_embed(sample_source)
print(f"{source_iframe=}")
# sample_funcs = _parse_functions(sample_code)
# funcs = _parse_functions(sample_code)
# func_identifiers = [f"{idx:2d}: {n.child_by_field_name('declarator').text.decode()}" for idx, n in enumerate(funcs)]
# print(f"updating drop down to:{func_identifiers}")
return sample_pass, sample_code, sample_title, source_iframe, funcs#, gr.Dropdown.update(choices=func_identifiers) #, sample_title, sample_auhtor
def _make_pipeline(model_cp = "Vipitis/santacoder-finetuned-Shadertoys-fine"): #bad default model for testing
# if torch.cuda.is_available():
# device = "cuda"
# else:
# device = "cpu"
tokenizer = AutoTokenizer.from_pretrained(model_cp, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_cp, trust_remote_code=True)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, trust_remote_code=True) #, device=device)
PIPE = pipe # set the global?
print(f"loaded model {model_cp} as a pipline")
return pipe
def _run_generation(model_ctx:str, pipe, gen_kwargs:dict):
"""
Text generation function
Args:
model_ctx (str): The context to start generation from.
pipe (Pipeline): The pipeline to use for generation.
gen_kwargs (dict): The generation kwargs.
Returns:
str: The generated text. (it iterates over time)
"""
# Tokenize the model_context
model_inputs = pipe.tokenizer(model_ctx, return_tensors="pt")
# Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer
# in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread.
streamer = TextIteratorStreamer(pipe.tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15.0)
generate_kwargs = dict(model_inputs, streamer=streamer, **gen_kwargs)
t = Thread(target=pipe.model.generate, kwargs=generate_kwargs)
t.start()
# Pull the generated text from the streamer, and update the model output.
model_output = ""
for new_text in streamer:
# print("step", end="")
model_output += new_text
yield model_output
streamer.on_finalized_text("stream reached the end.")
return model_output #is this ever reached?
def process_retn(retn):
return retn.split(";")[0].strip()
def get_full_replacement(orig_code, retn_start_idx, retn_end_idx, prediction) -> str:
"""
Batches the generated return statement into the code and returns the full altered code.
"""
print(f"{orig_code[retn_start_idx:retn_end_idx]=}")
generated = process_retn(prediction)
print(f"{generated=}")
variation = orig_code[:retn_start_idx] + generated + orig_code[retn_end_idx:]
return variation
def alter_return(orig_code, func_idx, temperature, max_new_tokens, top_p, repetition_penalty, pipeline=PIPE): #default pipeline can't be passed as gloabl?
"""
Replaces the return statement of a function with a generated one.
Args:
orig_code (str): The original code.
func_idx (int): The index of the function to replace the return statement of.
temperature (float): The temperature to use for generation.
max_new_tokens (int): The maximum number of tokens to generate.
top_p (float): The top_p to use for generation.
repetition_penalty (float): The repetition_penalty to use for generation.
pipeline (Pipeline): The pipeline to use for generation.
Returns:
str: The altered code.
"""
if pipeline is None:
print("no pipeline found, loading default one")
pipeline = _make_pipeline()
if isinstance(func_idx, str):
print(f"{func_idx=}")
func_idx = int(func_idx.split(":")[0].strip())
elif isinstance(func_idx, int):
pass
else:
raise gr.Error(f"func_idx must be int or str, not {type(func_idx)}")
generation_kwargs = _combine_generation_kwargs(temperature, max_new_tokens, top_p, repetition_penalty)
retrns = []
retrn_start_idx = orig_code.find("return")
while retrn_start_idx != -1:
retrn_end_idx = orig_code.find(";", retrn_start_idx)
retrns.append((retrn_start_idx, retrn_end_idx))
retrn_start_idx = orig_code.find("return", retrn_end_idx)
num_returns = len(retrns)
if num_returns == 0:
print("no return statement found, returning original code")
return orig_code
func_idx = int(max(0, min(func_idx, num_returns - 1))) #clamp to valid range, cast to int as a bodge.
retrn_start_idx, retrn_end_idx = retrns[func_idx]
model_context = orig_code[:retrn_start_idx] #TODO: maximal context?
model_inp = model_context + "return"
pipe_generation = pipeline(model_inp, return_full_text=False, **generation_kwargs)[0]["generated_text"] #pipeline kwargs are missing?!
altered_code = get_full_replacement(orig_code, retrn_start_idx+7, retrn_end_idx, pipe_generation)
return altered_code
def _combine_generation_kwargs(temperature, max_new_tokens, top_p, repetition_penalty):
gen_kwargs = {}
gen_kwargs["temperature"] = temperature
gen_kwargs["max_new_tokens"] = max_new_tokens
gen_kwargs["top_p"] = top_p
gen_kwargs["repetition_penalty"] = repetition_penalty
return gen_kwargs
def alter_body(old_code, func_id, funcs_list: list, prompt="", temperature=0.2, max_new_tokens=512, top_p=.95, repetition_penalty=1.2, pipeline=PIPE):
"""
Replaces the body of a function with a generated one.
Args:
old_code (str): The original code.
func_node (Node): The node of the function to replace the body of.
funcs_list (list): The list of all functions in the code.
prompt (str): The prompt(title) to use for generation.
temperature (float): The temperature to use for generation.
max_new_tokens (int): The maximum number of tokens to generate.
top_p (float): The top_p to use for generation.
repetition_penalty (float): The repetition_penalty to use for generation.
pipeline (Pipeline): The pipeline to use for generation.
Returns:
str: The altered code.
pipeline (Pipeline): The pipeline to update the state
"""
if isinstance(func_id, str):
print(f"{func_id=}")
func_id = int(func_id.split(":")[0].strip()) #undo their string casting?
elif isinstance(func_id, int):
pass
else:
raise gr.Error(f"func_id must be int or str, not {type(func_id)}")
func_node = funcs_list[func_id]
print(f"using for generation: {func_node=}")
generation_kwargs = _combine_generation_kwargs(temperature, max_new_tokens, top_p, repetition_penalty)
print(f"{pipeline=}") # check if default even loaded
if pipeline is None:
print("no pipeline found, loading default one")
pipeline = _make_pipeline("Vipitis/santacoder-finetuned-Shadertoys-fine")
func_start_idx = line_chr2char(old_code, func_node.start_point[0], func_node.start_point[1])
identifier_str = func_node.child_by_field_name("type").text.decode() + " " + func_node.child_by_field_name("declarator").text.decode() #func_start_idx:body_start_idx?
body_node = func_node.child_by_field_name("body")
body_start_idx, body_end_idx = node_str_idx(body_node)
# body_start_idx = line_chr2char(old_code, body_node.start_point[0], body_node.start_point[1])
# body_end_idx = line_chr2char(old_code, body_node.end_point[0], body_node.end_point[1])
print(f"{old_code[body_start_idx:body_end_idx]=}")
model_context = identifier_str # base case
# add any comments at the beginning of the function to the model_context
# second_child = func_node.child_by_field_name("body").children[1] #might error out?
docstring = get_docstrings(func_node) #might be empty?
if docstring:
model_context = model_context + "\n" + docstring
model_context = grab_before_comments(func_node) + model_context #prepend comments
if prompt != "":
model_context = f"//avialable functions: {','.join([n.child_by_field_name('declarator').text.decode() for n in funcs_list])}\n" + model_context #prepend available functions
model_context = "//Title: " + prompt + "\n" + model_context #prepend user prompt/title
model_context = "//Language: Shadertoy GLSL fragment shader\n" + model_context #prepend system prompt, language hint
print(f"{model_context=}")
# generation = pipeline(model_context, return_full_text=False, **generation_kwargs)[0]["generated_text"]
generation = _run_generation(model_context, pipeline, generation_kwargs)
for i in generation:
print(f"{i=}")
yield model_context + i, pipeline #fix in between, do all the stuff in the end?
generation = i[:] #seems to work
print(f"{generation=}")
ctx_with_generation = model_context + generation
print(f"{ctx_with_generation=}")
try:
#strip the body
first_gened_func = parse_functions(ctx_with_generation)[0] # truncate generation to a single function?
except IndexError:
print("generation wasn't a full function.")
altered_code = old_code[:func_start_idx] + model_context + generation + "//the generation didn't complete the function!\n" + old_code[body_end_idx:] #needs a newline to break out of the comment.
return altered_code, pipeline
# raise gr.Error(f"didn't generate a full function: {generation!r}]")
# print(f"{first_gened_func=}")
generated_body = first_gened_func.child_by_field_name("body").text.decode()
print(f"{generated_body=}")
altered_code = old_code[:func_start_idx] + identifier_str + generated_body + old_code[body_end_idx:]
print(f"{altered_code=}") #we get here successfully
yield altered_code, pipeline #yield once so it updates? -> works... gg but doesn't seem to do it for the dropdown
return altered_code, pipeline #never gets used by the code block? maybe I need to yield it first? but works in the ov_notebook
def list_dropdown(in_code): #only used for auto update, not on sample pick?
funcs = parse_functions(in_code)
# print(f"updating drop down to:{func_identifiers=}")
func_identifiers = [f"{idx:2d}: {n.child_by_field_name('declarator').text.decode()}" for idx, n in enumerate(funcs)]
# funcs = [n for n in funcs] #wrapped as set to avoid json issues?
print(f"updating drop down to:{func_identifiers}")
return funcs, gr.Dropdown.update(choices=func_identifiers)
if __name__ == "__main__": #works on huggingface?
passes_dataset = datasets.load_dataset("Vipitis/Shadertoys")
single_passes = passes_dataset.filter(lambda x: not x["has_inputs"] and x["num_passes"] == 1) #could also include shaders with no extra functions.
# single_passes = single_passes.filter(lambda x: x["license"] not in "copyright") #to avoid any "do not display this" license?
all_single_passes = datasets.concatenate_datasets([single_passes["train"], single_passes["test"]])
num_samples = len(all_single_passes)
with gr.Blocks() as site:
top_md = gr.Markdown(intro_text)
model_cp = gr.Textbox(value="Vipitis/santacoder-finetuned-Shadertoys-fine", label="Model Checkpoint (Enter to load!)", interactive=True)
sample_idx = gr.Slider(minimum=0, maximum=10513, value=3211, label="pick sample from dataset", step=1.0)
func_dropdown = gr.Dropdown(value=["0: edit the Code (or load a shader) to update this dropdown"], label="chose a function to modify") #breaks if I add a string in before that? #TODO: use type="index" to get int - always gives None?
prompt_text = gr.Textbox(value="the title used by the model has generation hint", label="prompt text", info="leave blank to skip", interactive=True)
with gr.Accordion("Advanced settings", open=False): # from: https://huggingface.co/spaces/bigcode/bigcode-playground/blob/main/app.py
with gr.Row():
column_1, column_2 = gr.Column(), gr.Column()
with column_1:
temperature = gr.Slider(
label="Temperature",
value=0.2, #start out at 0 to do greedy? or will there be an error?
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
)
max_new_tokens = gr.Slider(
label="Max new tokens",
value=265,
minimum=0,
maximum=2048, #this could be inferred from the model?
step=32,
interactive=True,
info="The maximum numbers of new tokens",
)
with column_2:
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
)
repetition_penalty = gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
with gr.Row():
gen_return_button = gr.Button("generate a alternate return statement", label="generate return", scale=0)
gen_func_button = gr.Button("generate an alternate function body", label="generate function", scale=1)
with gr.Row():
with gr.Column():
source_embed = gr.HTML('<iframe width="640" height="360" frameborder="0" src="" allowfullscreen></iframe>', label="How this shader originally renders")
our_embed = gr.HTML(label="glsl render of the current code")
sample_code = gr.Code(new_shadertoy_code, label="Current Code (will update changes you generate)", language=None)
bot_md = gr.Markdown(outro_text)
sample_pass = gr.State(value={})
pipe = gr.State(value=PIPE)
pipe.value=_make_pipeline("Vipitis/santacoder-finetuned-Shadertoys-fine") # set a default like this?
funcs = gr.State(value=[])
# funcs.value.append(list_dropdown(sample_code.value)[0]) #to circumvent the json issue?
# hist_state = gr.State(Value={})
# history_table = gr.JSON()
model_cp.submit(fn=_make_pipeline, inputs=[model_cp], outputs=[pipe]) # how can we trigger this on load?
sample_idx.release(fn=grab_sample, inputs=[sample_idx], outputs=[sample_pass, sample_code, prompt_text, source_embed]) #funcs here?
gen_return_button.click(fn=alter_return, inputs=[sample_code, func_dropdown, temperature, max_new_tokens, top_p, repetition_penalty, pipe], outputs=[sample_code])
gen_func_button.click(fn=alter_body, inputs=[sample_code, func_dropdown, funcs, prompt_text, temperature, max_new_tokens, top_p, repetition_penalty, pipe], outputs=[sample_code, pipe]).then(
fn=list_dropdown, inputs=[sample_code], outputs=[funcs, func_dropdown]
)
sample_code.change(fn=list_dropdown, inputs=[sample_code], outputs=[funcs, func_dropdown]).then(
fn=make_iframe, inputs=[sample_code], outputs=[our_embed])
site.queue()
site.launch()