Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -21,7 +21,7 @@ from src.vis_utils import *
|
|
21 |
from src.bin.PROBE import run_probe
|
22 |
|
23 |
# ------------------------------------------------------------------
|
24 |
-
# Helper functions
|
25 |
# ------------------------------------------------------------------
|
26 |
|
27 |
def add_new_eval(
|
@@ -40,7 +40,6 @@ def add_new_eval(
|
|
40 |
if any(task in benchmark_types for task in ['similarity', 'family', 'function']) and human_file is None:
|
41 |
gr.Warning("Human representations are required for similarity, family, or function benchmarks!")
|
42 |
return -1
|
43 |
-
|
44 |
if 'affinity' in benchmark_types and skempi_file is None:
|
45 |
gr.Warning("SKEMPI representations are required for affinity benchmark!")
|
46 |
return -1
|
@@ -77,20 +76,17 @@ def refresh_data():
|
|
77 |
"""Re‑start the space and pull fresh leaderboard CSVs from the HF Hub."""
|
78 |
api.restart_space(repo_id=repo_id)
|
79 |
benchmark_types = ["similarity", "function", "family", "affinity", "leaderboard"]
|
80 |
-
|
81 |
for benchmark_type in benchmark_types:
|
82 |
path = f"/tmp/{benchmark_type}_results.csv"
|
83 |
if os.path.exists(path):
|
84 |
os.remove(path)
|
85 |
-
|
86 |
benchmark_types.remove("leaderboard")
|
87 |
download_from_hub(benchmark_types)
|
88 |
|
89 |
|
90 |
-
# ------- Leaderboard helpers
|
91 |
|
92 |
def update_metrics(selected_benchmarks):
|
93 |
-
"""Populate metric selector according to chosen benchmark types."""
|
94 |
updated_metrics = set()
|
95 |
for benchmark in selected_benchmarks:
|
96 |
updated_metrics.update(benchmark_metric_mapping.get(benchmark, []))
|
@@ -98,50 +94,33 @@ def update_metrics(selected_benchmarks):
|
|
98 |
|
99 |
|
100 |
def update_leaderboard(selected_methods, selected_metrics):
|
101 |
-
|
102 |
-
return updated_df
|
103 |
|
104 |
-
# ------- Visualisation helpers
|
105 |
|
106 |
def get_plot_explanation(benchmark_type, x_metric, y_metric, aspect, dataset, single_metric):
|
107 |
-
"""Return a short natural‑language explanation for the produced plot."""
|
108 |
if benchmark_type == "similarity":
|
109 |
return (
|
110 |
-
f"
|
111 |
-
|
112 |
-
"performance on both metrics."
|
113 |
)
|
114 |
-
|
115 |
return (
|
116 |
-
f"
|
117 |
-
|
118 |
-
"Darker squares correspond to stronger performance; hierarchical clustering "
|
119 |
-
"groups similar models and tasks together."
|
120 |
)
|
121 |
-
|
122 |
return (
|
123 |
-
f"
|
124 |
-
f"**{dataset}** dataset. Higher median MCC values indicate better family‑"
|
125 |
-
"classification accuracy."
|
126 |
)
|
127 |
-
|
128 |
return (
|
129 |
-
f"
|
130 |
-
"model when predicting binding affinity changes. Higher values are better."
|
131 |
)
|
132 |
return ""
|
133 |
|
134 |
|
135 |
-
def generate_plot_and_explanation(
|
136 |
-
benchmark_type,
|
137 |
-
methods_selected,
|
138 |
-
x_metric,
|
139 |
-
y_metric,
|
140 |
-
aspect,
|
141 |
-
dataset,
|
142 |
-
single_metric,
|
143 |
-
):
|
144 |
-
"""Callback wrapper that returns both the image path and a textual explanation."""
|
145 |
plot_path = benchmark_plot(
|
146 |
benchmark_type,
|
147 |
methods_selected,
|
@@ -154,10 +133,34 @@ def generate_plot_and_explanation(
|
|
154 |
explanation = get_plot_explanation(benchmark_type, x_metric, y_metric, aspect, dataset, single_metric)
|
155 |
return plot_path, explanation
|
156 |
|
157 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
# UI definition
|
159 |
-
#
|
160 |
-
block = gr.Blocks()
|
161 |
|
162 |
with block:
|
163 |
gr.Markdown(LEADERBOARD_INTRODUCTION)
|
@@ -167,23 +170,28 @@ with block:
|
|
167 |
# 1️⃣ Leaderboard tab
|
168 |
# ------------------------------------------------------------------
|
169 |
with gr.TabItem("🏅 PROBE Leaderboard", elem_id="probe-benchmark-tab-table", id=1):
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
|
|
172 |
method_names = leaderboard['Method'].unique().tolist()
|
173 |
-
metric_names = leaderboard.columns.tolist()
|
174 |
-
metric_names.remove('Method') # remove non‑metric column
|
175 |
|
176 |
benchmark_metric_mapping = {
|
177 |
"similarity": [m for m in metric_names if m.startswith('sim_')],
|
178 |
-
"function":
|
179 |
-
"family":
|
180 |
-
"affinity":
|
181 |
}
|
182 |
|
183 |
-
# selectors -----------------------------------------------------
|
184 |
leaderboard_method_selector = gr.CheckboxGroup(
|
185 |
choices=method_names,
|
186 |
-
label="Select Methods
|
187 |
value=method_names,
|
188 |
interactive=True,
|
189 |
)
|
@@ -197,15 +205,14 @@ with block:
|
|
197 |
|
198 |
leaderboard_metric_selector = gr.CheckboxGroup(
|
199 |
choices=metric_names,
|
200 |
-
label="Select Metrics
|
201 |
value=None,
|
202 |
interactive=True,
|
203 |
)
|
204 |
|
205 |
-
# leaderboard table --------------------------------------------
|
206 |
baseline_value = get_baseline_df(method_names, metric_names)
|
207 |
baseline_value = baseline_value.applymap(lambda x: round(x, 4) if isinstance(x, (int, float)) else x)
|
208 |
-
baseline_header
|
209 |
baseline_datatype = ['markdown'] + ['number'] * len(metric_names)
|
210 |
|
211 |
with gr.Row(show_progress=True, variant='panel'):
|
@@ -215,22 +222,21 @@ with block:
|
|
215 |
type="pandas",
|
216 |
datatype=baseline_datatype,
|
217 |
interactive=False,
|
218 |
-
|
|
|
219 |
)
|
220 |
|
221 |
-
# callbacks
|
222 |
leaderboard_method_selector.change(
|
223 |
get_baseline_df,
|
224 |
inputs=[leaderboard_method_selector, leaderboard_metric_selector],
|
225 |
outputs=data_component,
|
226 |
)
|
227 |
-
|
228 |
benchmark_type_selector_lb.change(
|
229 |
lambda selected: update_metrics(selected),
|
230 |
inputs=[benchmark_type_selector_lb],
|
231 |
outputs=leaderboard_metric_selector,
|
232 |
)
|
233 |
-
|
234 |
leaderboard_metric_selector.change(
|
235 |
get_baseline_df,
|
236 |
inputs=[leaderboard_method_selector, leaderboard_metric_selector],
|
@@ -238,58 +244,36 @@ with block:
|
|
238 |
)
|
239 |
|
240 |
# ------------------------------------------------------------------
|
241 |
-
# 2️⃣
|
242 |
# ------------------------------------------------------------------
|
243 |
-
with gr.TabItem("📊
|
244 |
-
# Intro / instructions
|
245 |
gr.Markdown(
|
246 |
-
"""
|
247 |
-
|
248 |
-
Select a benchmark type first; context‑specific options will appear automatically.
|
249 |
-
Once your parameters are set, click **Plot** to generate the figure.
|
250 |
-
|
251 |
-
**How to read the plots**
|
252 |
-
* **Similarity (scatter)** – Each point is a model. Points nearer the top‑right perform well on both chosen similarity metrics.
|
253 |
-
* **Function prediction (heat‑map)** – Darker squares denote better scores. Rows/columns are clustered to reveal shared structure.
|
254 |
-
* **Family / Affinity (boxplots)** – Boxes summarise distribution across folds/targets. Higher medians indicate stronger performance.
|
255 |
-
""",
|
256 |
elem_classes="markdown-text",
|
257 |
)
|
258 |
-
|
259 |
-
# ------------------------------------------------------------------
|
260 |
-
# selectors specific to visualisation
|
261 |
-
# ------------------------------------------------------------------
|
262 |
vis_benchmark_type_selector = gr.Dropdown(
|
263 |
choices=list(benchmark_specific_metrics.keys()),
|
264 |
-
label="
|
265 |
value=None,
|
266 |
)
|
267 |
-
|
268 |
with gr.Row():
|
269 |
-
vis_x_metric_selector = gr.Dropdown(choices=[], label="
|
270 |
-
vis_y_metric_selector = gr.Dropdown(choices=[], label="
|
271 |
-
vis_aspect_type_selector = gr.Dropdown(choices=[], label="
|
272 |
-
vis_dataset_selector = gr.Dropdown(choices=[], label="
|
273 |
-
vis_single_metric_selector = gr.Dropdown(choices=[], label="
|
274 |
-
|
275 |
vis_method_selector = gr.CheckboxGroup(
|
276 |
choices=method_names,
|
277 |
-
label="
|
278 |
-
interactive=True,
|
279 |
value=method_names,
|
|
|
280 |
)
|
281 |
-
|
282 |
plot_button = gr.Button("Plot")
|
283 |
-
|
284 |
with gr.Row(show_progress=True, variant='panel'):
|
285 |
plot_output = gr.Image(label="Plot")
|
286 |
-
|
287 |
-
# textual explanation below the image
|
288 |
plot_explanation = gr.Markdown(visible=False)
|
289 |
-
|
290 |
-
# ------------------------------------------------------------------
|
291 |
-
# callbacks for visualisation tab
|
292 |
-
# ------------------------------------------------------------------
|
293 |
vis_benchmark_type_selector.change(
|
294 |
update_metric_choices,
|
295 |
inputs=[vis_benchmark_type_selector],
|
@@ -301,7 +285,6 @@ with block:
|
|
301 |
vis_single_metric_selector,
|
302 |
],
|
303 |
)
|
304 |
-
|
305 |
plot_button.click(
|
306 |
generate_plot_and_explanation,
|
307 |
inputs=[
|
@@ -335,53 +318,21 @@ with block:
|
|
335 |
with gr.TabItem("🚀 Submit here! ", elem_id="probe-benchmark-tab-table", id=4):
|
336 |
with gr.Row():
|
337 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
338 |
-
|
339 |
with gr.Row():
|
340 |
gr.Markdown("# ✉️✨ Submit your model's representation files here!", elem_classes="markdown-text")
|
341 |
-
|
342 |
with gr.Row():
|
343 |
with gr.Column():
|
344 |
model_name_textbox = gr.Textbox(label="Method name")
|
345 |
revision_name_textbox = gr.Textbox(label="Revision Method Name")
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
)
|
352 |
-
similarity_tasks = gr.CheckboxGroup(
|
353 |
-
choices=similarity_tasks_options,
|
354 |
-
label="Similarity Tasks",
|
355 |
-
interactive=True,
|
356 |
-
)
|
357 |
-
|
358 |
-
function_prediction_aspect = gr.Radio(
|
359 |
-
choices=function_prediction_aspect_options,
|
360 |
-
label="Function Prediction Aspects",
|
361 |
-
interactive=True,
|
362 |
-
)
|
363 |
-
|
364 |
-
family_prediction_dataset = gr.CheckboxGroup(
|
365 |
-
choices=family_prediction_dataset_options,
|
366 |
-
label="Family Prediction Datasets",
|
367 |
-
interactive=True,
|
368 |
-
)
|
369 |
-
|
370 |
-
function_dataset = gr.Textbox(
|
371 |
-
label="Function Prediction Datasets",
|
372 |
-
visible=False,
|
373 |
-
value="All_Data_Sets",
|
374 |
-
)
|
375 |
-
|
376 |
-
save_checkbox = gr.Checkbox(
|
377 |
-
label="Save results for leaderboard and visualization",
|
378 |
-
value=True,
|
379 |
-
)
|
380 |
-
|
381 |
with gr.Row():
|
382 |
human_file = gr.File(label="Representation file (CSV) for Human dataset", file_count="single", type='filepath')
|
383 |
skempi_file = gr.File(label="Representation file (CSV) for SKEMPI dataset", file_count="single", type='filepath')
|
384 |
-
|
385 |
submit_button = gr.Button("Submit Eval")
|
386 |
submission_result = gr.Markdown()
|
387 |
submit_button.click(
|
@@ -400,9 +351,7 @@ with block:
|
|
400 |
],
|
401 |
)
|
402 |
|
403 |
-
#
|
404 |
-
# global refresh button & citation accordion
|
405 |
-
# ----------------------------------------------------------------------
|
406 |
with gr.Row():
|
407 |
data_run = gr.Button("Refresh")
|
408 |
data_run.click(refresh_data, outputs=[data_component])
|
@@ -415,5 +364,5 @@ with block:
|
|
415 |
show_copy_button=True,
|
416 |
)
|
417 |
|
418 |
-
#
|
419 |
block.launch()
|
|
|
21 |
from src.bin.PROBE import run_probe
|
22 |
|
23 |
# ------------------------------------------------------------------
|
24 |
+
# Helper functions --------------------------------------------------
|
25 |
# ------------------------------------------------------------------
|
26 |
|
27 |
def add_new_eval(
|
|
|
40 |
if any(task in benchmark_types for task in ['similarity', 'family', 'function']) and human_file is None:
|
41 |
gr.Warning("Human representations are required for similarity, family, or function benchmarks!")
|
42 |
return -1
|
|
|
43 |
if 'affinity' in benchmark_types and skempi_file is None:
|
44 |
gr.Warning("SKEMPI representations are required for affinity benchmark!")
|
45 |
return -1
|
|
|
76 |
"""Re‑start the space and pull fresh leaderboard CSVs from the HF Hub."""
|
77 |
api.restart_space(repo_id=repo_id)
|
78 |
benchmark_types = ["similarity", "function", "family", "affinity", "leaderboard"]
|
|
|
79 |
for benchmark_type in benchmark_types:
|
80 |
path = f"/tmp/{benchmark_type}_results.csv"
|
81 |
if os.path.exists(path):
|
82 |
os.remove(path)
|
|
|
83 |
benchmark_types.remove("leaderboard")
|
84 |
download_from_hub(benchmark_types)
|
85 |
|
86 |
|
87 |
+
# ------- Leaderboard helpers -----------------------------------------------
|
88 |
|
89 |
def update_metrics(selected_benchmarks):
|
|
|
90 |
updated_metrics = set()
|
91 |
for benchmark in selected_benchmarks:
|
92 |
updated_metrics.update(benchmark_metric_mapping.get(benchmark, []))
|
|
|
94 |
|
95 |
|
96 |
def update_leaderboard(selected_methods, selected_metrics):
|
97 |
+
return get_baseline_df(selected_methods, selected_metrics)
|
|
|
98 |
|
99 |
+
# ------- Visualisation helpers ---------------------------------------------
|
100 |
|
101 |
def get_plot_explanation(benchmark_type, x_metric, y_metric, aspect, dataset, single_metric):
|
|
|
102 |
if benchmark_type == "similarity":
|
103 |
return (
|
104 |
+
f"Scatter plot compares models on **{x_metric}** (x‑axis) and **{y_metric}** (y‑axis). "
|
105 |
+
"Upper‑right points indicate jointly strong performance."
|
|
|
106 |
)
|
107 |
+
if benchmark_type == "function":
|
108 |
return (
|
109 |
+
f"Heat‑map shows model scores for **{aspect.upper()}** terms with **{single_metric}**. "
|
110 |
+
"Darker squares → better predictions."
|
|
|
|
|
111 |
)
|
112 |
+
if benchmark_type == "family":
|
113 |
return (
|
114 |
+
f"Box‑plots summarise cross‑fold MCC on **{dataset}**; higher medians are better."
|
|
|
|
|
115 |
)
|
116 |
+
if benchmark_type == "affinity":
|
117 |
return (
|
118 |
+
f"Box‑plots display distribution of **{single_metric}** scores for affinity prediction; higher values are better."
|
|
|
119 |
)
|
120 |
return ""
|
121 |
|
122 |
|
123 |
+
def generate_plot_and_explanation(benchmark_type, methods_selected, x_metric, y_metric, aspect, dataset, single_metric):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
plot_path = benchmark_plot(
|
125 |
benchmark_type,
|
126 |
methods_selected,
|
|
|
133 |
explanation = get_plot_explanation(benchmark_type, x_metric, y_metric, aspect, dataset, single_metric)
|
134 |
return plot_path, explanation
|
135 |
|
136 |
+
# ---------------------------------------------------------------------------
|
137 |
+
# Custom CSS for frozen first column and clearer table styles
|
138 |
+
# ---------------------------------------------------------------------------
|
139 |
+
CUSTOM_CSS = """
|
140 |
+
/* freeze first column */
|
141 |
+
#leaderboard-table thead th:first-child,
|
142 |
+
#leaderboard-table tbody td:first-child {
|
143 |
+
position: sticky;
|
144 |
+
left: 0;
|
145 |
+
background: white;
|
146 |
+
z-index: 2;
|
147 |
+
}
|
148 |
+
|
149 |
+
/* striped rows for readability */
|
150 |
+
#leaderboard-table tbody tr:nth-child(odd) {
|
151 |
+
background: #fafafa;
|
152 |
+
}
|
153 |
+
|
154 |
+
/* centre numeric cells */
|
155 |
+
#leaderboard-table td:not(:first-child) {
|
156 |
+
text-align: center;
|
157 |
+
}
|
158 |
+
"""
|
159 |
+
|
160 |
+
# ---------------------------------------------------------------------------
|
161 |
# UI definition
|
162 |
+
# ---------------------------------------------------------------------------
|
163 |
+
block = gr.Blocks(css=CUSTOM_CSS)
|
164 |
|
165 |
with block:
|
166 |
gr.Markdown(LEADERBOARD_INTRODUCTION)
|
|
|
170 |
# 1️⃣ Leaderboard tab
|
171 |
# ------------------------------------------------------------------
|
172 |
with gr.TabItem("🏅 PROBE Leaderboard", elem_id="probe-benchmark-tab-table", id=1):
|
173 |
+
# small workflow figure at top
|
174 |
+
gr.Image(
|
175 |
+
value="./src/data/PROBE_workflow_figure.jpg",
|
176 |
+
show_label=False,
|
177 |
+
height=150,
|
178 |
+
container=False,
|
179 |
+
)
|
180 |
|
181 |
+
leaderboard = get_baseline_df(None, None)
|
182 |
method_names = leaderboard['Method'].unique().tolist()
|
183 |
+
metric_names = leaderboard.columns.tolist(); metric_names.remove('Method')
|
|
|
184 |
|
185 |
benchmark_metric_mapping = {
|
186 |
"similarity": [m for m in metric_names if m.startswith('sim_')],
|
187 |
+
"function": [m for m in metric_names if m.startswith('func')],
|
188 |
+
"family": [m for m in metric_names if m.startswith('fam_')],
|
189 |
+
"affinity": [m for m in metric_names if m.startswith('aff_')],
|
190 |
}
|
191 |
|
|
|
192 |
leaderboard_method_selector = gr.CheckboxGroup(
|
193 |
choices=method_names,
|
194 |
+
label="Select Methods",
|
195 |
value=method_names,
|
196 |
interactive=True,
|
197 |
)
|
|
|
205 |
|
206 |
leaderboard_metric_selector = gr.CheckboxGroup(
|
207 |
choices=metric_names,
|
208 |
+
label="Select Metrics",
|
209 |
value=None,
|
210 |
interactive=True,
|
211 |
)
|
212 |
|
|
|
213 |
baseline_value = get_baseline_df(method_names, metric_names)
|
214 |
baseline_value = baseline_value.applymap(lambda x: round(x, 4) if isinstance(x, (int, float)) else x)
|
215 |
+
baseline_header = ["Method"] + metric_names
|
216 |
baseline_datatype = ['markdown'] + ['number'] * len(metric_names)
|
217 |
|
218 |
with gr.Row(show_progress=True, variant='panel'):
|
|
|
222 |
type="pandas",
|
223 |
datatype=baseline_datatype,
|
224 |
interactive=False,
|
225 |
+
elem_id="leaderboard-table",
|
226 |
+
height=600, # make table longer
|
227 |
)
|
228 |
|
229 |
+
# callbacks
|
230 |
leaderboard_method_selector.change(
|
231 |
get_baseline_df,
|
232 |
inputs=[leaderboard_method_selector, leaderboard_metric_selector],
|
233 |
outputs=data_component,
|
234 |
)
|
|
|
235 |
benchmark_type_selector_lb.change(
|
236 |
lambda selected: update_metrics(selected),
|
237 |
inputs=[benchmark_type_selector_lb],
|
238 |
outputs=leaderboard_metric_selector,
|
239 |
)
|
|
|
240 |
leaderboard_metric_selector.change(
|
241 |
get_baseline_df,
|
242 |
inputs=[leaderboard_method_selector, leaderboard_metric_selector],
|
|
|
244 |
)
|
245 |
|
246 |
# ------------------------------------------------------------------
|
247 |
+
# 2️⃣ Visualisation tab
|
248 |
# ------------------------------------------------------------------
|
249 |
+
with gr.TabItem("📊 Visualizations", elem_id="probe-benchmark-tab-visualization", id=2):
|
|
|
250 |
gr.Markdown(
|
251 |
+
"""## **Interactive Visualizations**
|
252 |
+
Choose a benchmark type; context‑specific options will appear. Click **Plot** and an explanation will follow the figure.""",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
elem_classes="markdown-text",
|
254 |
)
|
|
|
|
|
|
|
|
|
255 |
vis_benchmark_type_selector = gr.Dropdown(
|
256 |
choices=list(benchmark_specific_metrics.keys()),
|
257 |
+
label="Benchmark Type",
|
258 |
value=None,
|
259 |
)
|
|
|
260 |
with gr.Row():
|
261 |
+
vis_x_metric_selector = gr.Dropdown(choices=[], label="X‑axis Metric", visible=False)
|
262 |
+
vis_y_metric_selector = gr.Dropdown(choices=[], label="Y‑axis Metric", visible=False)
|
263 |
+
vis_aspect_type_selector = gr.Dropdown(choices=[], label="Aspect", visible=False)
|
264 |
+
vis_dataset_selector = gr.Dropdown(choices=[], label="Dataset", visible=False)
|
265 |
+
vis_single_metric_selector = gr.Dropdown(choices=[], label="Metric", visible=False)
|
|
|
266 |
vis_method_selector = gr.CheckboxGroup(
|
267 |
choices=method_names,
|
268 |
+
label="Methods",
|
|
|
269 |
value=method_names,
|
270 |
+
interactive=True,
|
271 |
)
|
|
|
272 |
plot_button = gr.Button("Plot")
|
|
|
273 |
with gr.Row(show_progress=True, variant='panel'):
|
274 |
plot_output = gr.Image(label="Plot")
|
|
|
|
|
275 |
plot_explanation = gr.Markdown(visible=False)
|
276 |
+
# callbacks
|
|
|
|
|
|
|
277 |
vis_benchmark_type_selector.change(
|
278 |
update_metric_choices,
|
279 |
inputs=[vis_benchmark_type_selector],
|
|
|
285 |
vis_single_metric_selector,
|
286 |
],
|
287 |
)
|
|
|
288 |
plot_button.click(
|
289 |
generate_plot_and_explanation,
|
290 |
inputs=[
|
|
|
318 |
with gr.TabItem("🚀 Submit here! ", elem_id="probe-benchmark-tab-table", id=4):
|
319 |
with gr.Row():
|
320 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
|
|
321 |
with gr.Row():
|
322 |
gr.Markdown("# ✉️✨ Submit your model's representation files here!", elem_classes="markdown-text")
|
|
|
323 |
with gr.Row():
|
324 |
with gr.Column():
|
325 |
model_name_textbox = gr.Textbox(label="Method name")
|
326 |
revision_name_textbox = gr.Textbox(label="Revision Method Name")
|
327 |
+
benchmark_types = gr.CheckboxGroup(choices=TASK_INFO, label="Benchmark Types", interactive=True)
|
328 |
+
similarity_tasks = gr.CheckboxGroup(choices=similarity_tasks_options, label="Similarity Tasks", interactive=True)
|
329 |
+
function_prediction_aspect = gr.Radio(choices=function_prediction_aspect_options, label="Function Prediction Aspects", interactive=True)
|
330 |
+
family_prediction_dataset = gr.CheckboxGroup(choices=family_prediction_dataset_options, label="Family Prediction Datasets", interactive=True)
|
331 |
+
function_dataset = gr.Textbox(label="Function Prediction Datasets", visible=False, value="All_Data_Sets")
|
332 |
+
save_checkbox = gr.Checkbox(label="Save results for leaderboard and visualization", value=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
with gr.Row():
|
334 |
human_file = gr.File(label="Representation file (CSV) for Human dataset", file_count="single", type='filepath')
|
335 |
skempi_file = gr.File(label="Representation file (CSV) for SKEMPI dataset", file_count="single", type='filepath')
|
|
|
336 |
submit_button = gr.Button("Submit Eval")
|
337 |
submission_result = gr.Markdown()
|
338 |
submit_button.click(
|
|
|
351 |
],
|
352 |
)
|
353 |
|
354 |
+
# global refresh + citation ---------------------------------------------
|
|
|
|
|
355 |
with gr.Row():
|
356 |
data_run = gr.Button("Refresh")
|
357 |
data_run.click(refresh_data, outputs=[data_component])
|
|
|
364 |
show_copy_button=True,
|
365 |
)
|
366 |
|
367 |
+
# ---------------------------------------------------------------------------
|
368 |
block.launch()
|