mgyigit commited on
Commit
50ca4fc
1 Parent(s): 0de3167

Update src/bin/PROBE.py

Browse files
Files changed (1) hide show
  1. src/bin/PROBE.py +10 -10
src/bin/PROBE.py CHANGED
@@ -17,7 +17,9 @@ def load_representation(multi_col_representation_vector_file_path):
17
 
18
  def run_probe(benchmarks, representation_name, representation_file_human, representation_file_affinity, similarity_tasks=["Sparse","200","500"], function_prediction_aspect="All_Aspects", function_prediction_dataset="All_Data_Sets", family_prediction_dataset=["nc","uc50","uc30","mm15"], detailed_output=False):
19
  print("\n\nPROBE (Protein RepresentatiOn Benchmark) run is started...\n\n")
20
-
 
 
21
  if any(item in ['similarity', 'function', 'family', 'all'] for item in benchmarks):
22
  print("\nRepresentation vectors are loading...\n")
23
  human_representation_dataframe = load_representation(representation_file_human)
@@ -30,9 +32,7 @@ def run_probe(benchmarks, representation_name, representation_file_human, repres
30
  ssi.similarity_tasks = similarity_tasks
31
  ssi.detailed_output = detailed_output
32
  similarity_result = ssi.calculate_all_correlations()
33
- print("Similarity Result:")
34
- print(similarity_result)
35
-
36
 
37
  if "function" in benchmarks:
38
  print("\n\nOntology-based protein function prediction benchmark is running...\n")
@@ -42,26 +42,26 @@ def run_probe(benchmarks, representation_name, representation_file_human, repres
42
  fp.representation_name = representation_name
43
  fp.detailed_output = detailed_output
44
  function_results = fp.pred_output()
45
- print("Function results:")
46
- print(function_results)
47
 
48
  if "family" in benchmarks:
49
  print("\n\nDrug target protein family classification benchmark is running...\n")
50
  tfc.representation_path = representation_file_human
51
  tfc.representation_name = representation_name
52
  tfc.detailed_output = detailed_output
 
53
  for dataset in family_prediction_dataset:
54
  family_result = tfc.score_protein_rep(dataset)
55
- print(f"Family results for {dataset}:")
56
- print(family_result)
57
 
58
  if "affinity" in benchmarks:
59
  print("\n\nProtein-protein binding affinity estimation benchmark is running...\n")
60
  bae.skempi_vectors_path = representation_file_affinity
61
  bae.representation_name = representation_name
62
  affinity_result = bae.predict_affinities_and_report_results()
63
- print("Affinity Results:")
64
- print(affinity_result)
 
65
 
66
  print("\n\nPROBE (Protein RepresentatiOn Benchmark) run is finished...\n")
67
  return 0
 
17
 
18
  def run_probe(benchmarks, representation_name, representation_file_human, representation_file_affinity, similarity_tasks=["Sparse","200","500"], function_prediction_aspect="All_Aspects", function_prediction_dataset="All_Data_Sets", family_prediction_dataset=["nc","uc50","uc30","mm15"], detailed_output=False):
19
  print("\n\nPROBE (Protein RepresentatiOn Benchmark) run is started...\n\n")
20
+ result = {}
21
+ result['Method'] = representation_name
22
+
23
  if any(item in ['similarity', 'function', 'family', 'all'] for item in benchmarks):
24
  print("\nRepresentation vectors are loading...\n")
25
  human_representation_dataframe = load_representation(representation_file_human)
 
32
  ssi.similarity_tasks = similarity_tasks
33
  ssi.detailed_output = detailed_output
34
  similarity_result = ssi.calculate_all_correlations()
35
+ result['similarity'] = similarity_result
 
 
36
 
37
  if "function" in benchmarks:
38
  print("\n\nOntology-based protein function prediction benchmark is running...\n")
 
42
  fp.representation_name = representation_name
43
  fp.detailed_output = detailed_output
44
  function_results = fp.pred_output()
45
+ result['function'] = function_results
 
46
 
47
  if "family" in benchmarks:
48
  print("\n\nDrug target protein family classification benchmark is running...\n")
49
  tfc.representation_path = representation_file_human
50
  tfc.representation_name = representation_name
51
  tfc.detailed_output = detailed_output
52
+ result['family'] = {}
53
  for dataset in family_prediction_dataset:
54
  family_result = tfc.score_protein_rep(dataset)
55
+ result['family']['dataset'] = family_result
 
56
 
57
  if "affinity" in benchmarks:
58
  print("\n\nProtein-protein binding affinity estimation benchmark is running...\n")
59
  bae.skempi_vectors_path = representation_file_affinity
60
  bae.representation_name = representation_name
61
  affinity_result = bae.predict_affinities_and_report_results()
62
+ result['affinity'] = affinity_result
63
+
64
+ print(result)
65
 
66
  print("\n\nPROBE (Protein RepresentatiOn Benchmark) run is finished...\n")
67
  return 0