PROBE / src /vis_utils.py
mgyigit's picture
Update src/vis_utils.py
17c3e5b verified
raw
history blame
12.3 kB
import gradio as gr
import pandas as pd
import re
import os
import json
import yaml
import matplotlib.pyplot as plt
import seaborn as sns
import plotnine as p9
import sys
script_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append('..')
sys.path.append('.')
from about import *
global data_component, filter_component
def get_baseline_df(selected_methods, selected_metrics):
df = pd.read_csv(CSV_RESULT_PATH)
present_columns = ["method_name"] + selected_metrics
df = df[df['method_name'].isin(selected_methods)][present_columns]
return df
def get_method_color(method):
return color_dict.get(method, 'black') # If method is not in color_dict, use black
def set_colors_and_marks_for_representation_groups(ax):
for label in ax.get_xticklabels():
text = label.get_text()
color = group_color_dict.get(text, 'black') # Default to black if label not in dict
label.set_color(color)
label.set_fontweight('bold')
# Add a caret symbol to specific labels
if text in {'MUT2VEC', 'PFAM', 'GENE2VEC', 'BERT-PFAM'}:
label.set_text(f"^ {text}")
def benchmark_plot(benchmark_type, methods_selected, x_metric, y_metric):
if benchmark_type == 'similarity':
title = f"{x_metric} vs {y_metric}"
return plot_similarity_results(methods_selected, x_metric, y_metric, title)
elif benchmark_type == 'function':
return plot_function_results("./data/function_results.csv", x_metric, y_metric, methods_selected)
elif benchmark_type == 'family':
return plot_family_results("./data/family_results.csv", methods_selected, x_metric, save_path="./plot_images")
elif benchmark_type == "affinity":
return plot_affinity_results("./data/affinity_results.csv", methods_selected, x_metric, save_path="./plot_images")
else:
# Use general visualizer logic
return general_visualizer_plot(methods_selected, x_metric=x_metric, y_metric=y_metric)
def general_visualizer(methods_selected, x_metric, y_metric):
df = pd.read_csv(CSV_RESULT_PATH)
filtered_df = df[df['method_name'].isin(methods_selected)]
# Create a Seaborn lineplot with method as hue
plt.figure(figsize=(10, 8)) # Increase figure size
sns.lineplot(
data=filtered_df,
x=x_metric,
y=y_metric,
hue="method_name", # Different colors for different methods
marker="o", # Add markers to the line plot
)
# Add labels and title
plt.xlabel(x_metric)
plt.ylabel(y_metric)
plt.title(f'{y_metric} vs {x_metric} for selected methods')
plt.grid(True)
# Save the plot to display it in Gradio
plot_path = "plot.png"
plt.savefig(plot_path)
plt.close()
return plot_path
def plot_similarity_results(methods_selected, x_metric, y_metric, title):
df = pd.read_csv(CSV_RESULT_PATH)
# Filter the dataframe based on selected methods
filtered_df = df[df['method_name'].isin(methods_selected)]
def get_method_color(method):
return color_dict.get(method.upper(), 'black')
# Add a new column to the dataframe for the color
filtered_df['color'] = filtered_df['method_name'].apply(get_method_color)
adjust_text_dict = {
'expand_text': (1.15, 1.4), 'expand_points': (1.15, 1.25), 'expand_objects': (1.05, 1.5),
'expand_align': (1.05, 1.2), 'autoalign': 'xy', 'va': 'center', 'ha': 'center',
'force_text': (.0, 1.), 'force_objects': (.0, 1.),
'lim': 500000, 'precision': 1., 'avoid_points': True, 'avoid_text': True
}
# Create the scatter plot using plotnine (ggplot)
g = (p9.ggplot(data=filtered_df,
mapping=p9.aes(x=x_metric, # Use the selected x_metric
y=y_metric, # Use the selected y_metric
color='color', # Use the dynamically generated color
label='method_name')) # Label each point by the method name
+ p9.geom_point(size=3) # Add points with no jitter, set point size
+ p9.geom_text(nudge_y=0.02, size=8) # Add method names as labels, nudge slightly above the points
+ p9.labs(title=title, x=f"{x_metric}", y=f"{y_metric}") # Dynamic labels for X and Y axes
+ p9.scale_color_identity() # Use colors directly from the dataframe
+ p9.theme(legend_position='none',
figure_size=(8, 8), # Set figure size
axis_text=p9.element_text(size=10),
axis_title_x=p9.element_text(size=12),
axis_title_y=p9.element_text(size=12))
)
# Save the plot as an image
save_path = "./plot_images" # Ensure this folder exists or adjust the path
os.makedirs(save_path, exist_ok=True) # Create directory if it doesn't exist
filename = os.path.join(save_path, title.replace(" ", "_") + "_Similarity_Scatter.png")
g.save(filename=filename, dpi=400)
return filename
def plot_function_results(file_path, aspect, metric, method_names):
# Load data
df = pd.read_csv(file_path)
# Filter for selected methods
df = df[df['Method'].isin(method_names)]
# Filter columns for specified aspect and metric
columns_to_plot = [col for col in df.columns if col.startswith(f"{aspect}_") and col.endswith(f"_{metric}")]
df = df[['Method'] + columns_to_plot]
df.set_index('Method', inplace=True)
# Create clustermap
g = sns.clustermap(df, annot=True, cmap="YlGnBu", row_cluster=False, col_cluster=False, figsize=(15, 15))
# Get heatmap axis and customize labels
ax = g.ax_heatmap
ax.set_xlabel("")
ax.set_ylabel("")
# Apply color and caret adjustments to x-axis labels
set_colors_and_marks_for_representation_groups(ax)
# Save the plot as an image
save_path = "./plot_images" # Ensure this folder exists or adjust the path
os.makedirs(save_path, exist_ok=True) # Create directory if it doesn't exist
filename = os.path.join(save_path, f"{aspect}_{metric}_heatmap.png")
plt.savefig(filename, dpi=400, bbox_inches='tight')
plt.close() # Close the plot to free memory
return filename
def plot_family_results(file_path, method_names, metric, save_path="./plot_images"):
# Load data
df = pd.read_csv(file_path)
# Filter by method names and selected metric columns
df = df[df['Method'].isin(method_names)]
metric_columns = [col for col in df.columns if col.startswith(f"{metric}_")]
# Check if there are columns matching the selected metric
if not metric_columns:
print(f"No columns found for metric '{metric}'.")
return None
# Reshape data for plotting
df_long = pd.melt(df[['Method'] + metric_columns], id_vars=['Method'], var_name='Fold', value_name='Value')
df_long['Fold'] = df_long['Fold'].apply(lambda x: int(x.split('_')[-1])) # Extract fold index
# Set up the plot
sns.set(rc={'figure.figsize': (13.7, 18.27)})
sns.set_theme(style="whitegrid", color_codes=True)
ax = sns.boxplot(data=df_long, x='Value', y='Method', hue='Fold', whis=np.inf, orient="h")
# Customize x-axis and y-axis tickers and grid
ax.xaxis.set_major_locator(ticker.MultipleLocator(0.2))
ax.get_xaxis().set_minor_locator(ticker.AutoMinorLocator())
ax.get_yaxis().set_minor_locator(ticker.AutoMinorLocator())
ax.grid(b=True, which='major', color='gainsboro', linewidth=1.0)
ax.grid(b=True, which='minor', color='whitesmoke', linewidth=0.5)
ax.set_xlim(0, 1)
# Draw dashed lines between different representations on y-axis
yticks = ax.get_yticks()
for ytick in yticks:
ax.hlines(ytick + 0.5, -0.1, 1, linestyles='dashed')
# Apply color settings to y-axis labels
set_colors_and_marks_for_representation_groups(ax)
# Ensure save directory exists
os.makedirs(save_path, exist_ok=True)
# Save the plot
filename = os.path.join(save_path, f"{metric}_family_results.png")
ax.get_figure().savefig(filename, dpi=400, bbox_inches='tight')
plt.close() # Close the plot to free memory
return filename
def plot_affinity_results(file_path, method_names, metric, save_path="./plot_images"):
# Load the CSV data
df = pd.read_csv(file_path)
# Filter for selected methods
df = df[df['Method'].isin(method_names)]
# Gather columns related to the specified metric and validate
metric_columns = [col for col in df.columns if col.startswith(f"{metric}_")]
if not metric_columns:
print(f"No columns found for metric '{metric}'.")
return None
# Reshape data for plotting
df_long = pd.melt(df[['Method'] + metric_columns], id_vars=['Method'], var_name='Fold', value_name='Value')
df_long['Fold'] = df_long['Fold'].apply(lambda x: int(x.split('_')[-1])) # Extract fold index for sorting
# Set up the plot
sns.set(rc={'figure.figsize': (13.7, 8.27)})
sns.set_theme(style="whitegrid", color_codes=True)
# Create a boxplot for the metric
ax = sns.boxplot(data=df_long, x='Value', y='Method', hue='Fold', whis=np.inf, orient="h")
# Customize x-axis and y-axis tickers and grid
ax.xaxis.set_major_locator(ticker.MultipleLocator(5))
ax.get_xaxis().set_minor_locator(mpl.ticker.AutoMinorLocator())
ax.get_yaxis().set_minor_locator(mpl.ticker.AutoMinorLocator())
ax.grid(b=True, which='major', color='gainsboro', linewidth=1.0)
ax.grid(b=True, which='minor', color='whitesmoke', linewidth=0.5)
# Apply custom color settings to y-axis labels
set_colors_and_marks_for_representation_groups(ax)
# Ensure save path exists
os.makedirs(save_path, exist_ok=True)
# Save the plot
filename = os.path.join(save_path, f"{metric}_affinity_results.png")
ax.get_figure().savefig(filename, dpi=400, bbox_inches='tight')
plt.close() # Close the plot to free memory
return filename
def update_metric_choices(benchmark_type):
if benchmark_type == 'similarity':
# Show x and y metric selectors for similarity
metric_names = benchmark_specific_metrics.get(benchmark_type, [])
return (
gr.update(choices=metric_names, value=metric_names[0], visible=True),
gr.update(choices=metric_names, value=metric_names[1], visible=True),
gr.update(visible=False), gr.update(visible=False),
gr.update(visible=False), gr.update(visible=False)
)
elif benchmark_type == 'function':
# Show aspect and dataset type selectors for function
aspect_types = benchmark_specific_metrics[benchmark_type]['aspect_types']
dataset_types = benchmark_specific_metrics[benchmark_type]['dataset_types']
return (
gr.update(visible=False), gr.update(visible=False),
gr.update(choices=aspect_types, value=aspect_types[0], visible=True),
gr.update(choices=dataset_types, value=dataset_types[0], visible=True),
gr.update(visible=False), gr.update(visible=False)
)
elif benchmark_type == 'family':
# Show dataset and metric selectors for family
datasets = benchmark_specific_metrics[benchmark_type]['datasets']
metrics = benchmark_specific_metrics[benchmark_type]['metrics']
return (
gr.update(visible=False), gr.update(visible=False),
gr.update(visible=False), gr.update(visible=False),
gr.update(choices=datasets, value=datasets[0], visible=True),
gr.update(choices=metrics, value=metrics[0], visible=True)
)
elif benchmark_type == 'affinity':
# Show single metric selector for affinity
metrics = benchmark_specific_metrics[benchmark_type]
return (
gr.update(visible=False), gr.update(visible=False),
gr.update(visible=False), gr.update(visible=False),
gr.update(visible=False), gr.update(choices=metrics, value=metrics[0], visible=True)
)
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)