PROBE / app.py
mgyigit's picture
Update app.py
c0e572f verified
raw
history blame
10.9 kB
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
import gradio as gr
import pandas as pd
import re
import os
import json
import yaml
import matplotlib.pyplot as plt
import seaborn as sns
import plotnine as p9
import sys
sys.path.append('./src')
sys.path.append('.')
from src.about import *
from src.saving_utils import *
from src.vis_utils import *
from src.bin.PROBE import run_probe
def add_new_eval(
human_file,
skempi_file,
model_name_textbox: str,
revision_name_textbox: str,
benchmark_types,
similarity_tasks,
function_prediction_aspect,
function_prediction_dataset,
family_prediction_dataset,
save,
):
representation_name = model_name_textbox if revision_name_textbox == '' else revision_name_textbox
results = run_probe(benchmark_types, representation_name, human_file, skempi_file, similarity_tasks, function_prediction_aspect, function_prediction_dataset, family_prediction_dataset)
print(results)
if save:
save_results(representation_name, benchmark_types, results)
print("Results are saved!")
return 0
def refresh_data():
benchmark_types = ["similarity", "function", "family", "affinity"]
download_from_hub(benchmark_types)
# Define a function to update metrics based on benchmark type selection
def update_metrics(selected_benchmarks):
updated_metrics = set()
for benchmark in selected_benchmarks:
updated_metrics.update(benchmark_metric_mapping.get(benchmark, []))
return list(updated_metrics)
# Define a function to update the leaderboard
def update_leaderboard(selected_methods, selected_metrics):
updated_df = get_baseline_df(selected_methods, selected_metrics)
return updated_df
block = gr.Blocks()
with block:
gr.Markdown(LEADERBOARD_INTRODUCTION)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("🏅 PROBE Leaderboard", elem_id="probe-benchmark-tab-table", id=1):
leaderboard = get_baseline_df(None, None) #get baseline leaderboard without filtering
method_names = leaderboard['Method'].unique().tolist()
metric_names = leaderboard.columns.tolist()
metrics_with_method = metric_names.copy()
metric_names.remove('Method') # Remove method_name from the metric options
benchmark_metric_mapping = {
"similarity": [metric for metric in metric_names if metric.startswith('sim_')],
"function": [metric for metric in metric_names if metric.startswith('func')],
"family": [metric for metric in metric_names if metric.startswith('fam_')],
"affinity": [metric for metric in metric_names if metric.startswith('aff_')],
}
# Leaderboard section with method and metric selectors
leaderboard_method_selector = gr.CheckboxGroup(
choices=method_names, label="Select Methods for the Leaderboard", value=method_names, interactive=True
)
benchmark_type_selector = gr.CheckboxGroup(
choices=list(benchmark_metric_mapping.keys()),
label="Select Benchmark Types",
value=None, # Initially select all benchmark types
interactive=True
)
leaderboard_metric_selector = gr.CheckboxGroup(
choices=metric_names, label="Select Metrics for the Leaderboard", value=None, interactive=True
)
# Display the filtered leaderboard
baseline_value = get_baseline_df(method_names, metric_names)
baseline_header = ["Method"] + metric_names
baseline_datatype = ['markdown'] + ['number'] * len(metric_names)
with gr.Row(show_progress=True, variant='panel'):
data_component = gr.components.Dataframe(
value=baseline_value,
headers=baseline_header,
type="pandas",
datatype=baseline_datatype,
interactive=False,
visible=True,
)
# Update leaderboard when method/metric selection changes
leaderboard_method_selector.change(
get_baseline_df,
inputs=[leaderboard_method_selector, leaderboard_metric_selector],
outputs=data_component
)
# Update metrics when benchmark type changes
benchmark_type_selector.change(
lambda selected_benchmarks: update_metrics(selected_benchmarks),
inputs=[benchmark_type_selector],
outputs=leaderboard_metric_selector
)
leaderboard_metric_selector.change(
get_baseline_df,
inputs=[leaderboard_method_selector, leaderboard_metric_selector],
outputs=data_component
)
with gr.Row():
gr.Markdown(
"""
## **Below, you can visualize the results displayed in the Leaderboard.**
### Once you choose a benchmark type, the related options for metrics, datasets, and other parameters will become visible. Select the methods and metrics of interest from the options to generate visualizations.
"""
)
# Dropdown for benchmark type
benchmark_type_selector = gr.Dropdown(choices=list(benchmark_specific_metrics.keys()), label="Select Benchmark Type", value=None)
with gr.Row():
# Dynamic selectors
x_metric_selector = gr.Dropdown(choices=[], label="Select X-axis Metric", visible=False)
y_metric_selector = gr.Dropdown(choices=[], label="Select Y-axis Metric", visible=False)
aspect_type_selector = gr.Dropdown(choices=[], label="Select Aspect Type", visible=False)
dataset_selector = gr.Dropdown(choices=[], label="Select Dataset", visible=False)
single_metric_selector = gr.Dropdown(choices=[], label="Select Metric", visible=False)
method_selector = gr.CheckboxGroup(choices=method_names, label="Select methods to visualize", interactive=True, value=method_names)
# Button to draw the plot for the selected benchmark
plot_button = gr.Button("Plot")
with gr.Row(show_progress=True, variant='panel'):
plot_output = gr.Image(label="Plot")
# Update selectors when benchmark type changes
benchmark_type_selector.change(
update_metric_choices,
inputs=[benchmark_type_selector],
outputs=[x_metric_selector, y_metric_selector, aspect_type_selector, dataset_selector, single_metric_selector]
)
plot_button.click(
benchmark_plot,
inputs=[benchmark_type_selector, method_selector, x_metric_selector, y_metric_selector, aspect_type_selector, dataset_selector, single_metric_selector],
outputs=plot_output
)
with gr.TabItem("📝 About", elem_id="probe-benchmark-tab-table", id=2):
with gr.Row():
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("🚀 Submit here! ", elem_id="probe-benchmark-tab-table", id=3):
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# ✉️✨ Submit your model's representation files here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(
label="Method name",
)
revision_name_textbox = gr.Textbox(
label="Revision Method Name",
)
benchmark_types = gr.CheckboxGroup(
choices=TASK_INFO,
label="Benchmark Types",
interactive=True,
)
similarity_tasks = gr.CheckboxGroup(
choices=similarity_tasks_options,
label="Similarity Tasks",
interactive=True,
)
function_prediction_aspect = gr.Radio(
choices=function_prediction_aspect_options,
label="Function Prediction Aspects",
interactive=True,
)
family_prediction_dataset = gr.CheckboxGroup(
choices=family_prediction_dataset_options,
label="Family Prediction Datasets",
interactive=True,
)
function_dataset = gr.Textbox(
label="Function Prediction Datasets",
visible=False,
value="All_Data_Sets"
)
save_checkbox = gr.Checkbox(
label="Save results for leaderboard and visualization",
value=True
)
#with gr.Column():
with gr.Row():
human_file = gr.components.File(label="The representation file (csv) for Human dataset", file_count="single", type='filepath')
skempi_file = gr.components.File(label="The representation file (csv) for SKEMPI dataset", file_count="single", type='filepath')
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
inputs=[
human_file,
skempi_file,
model_name_textbox,
revision_name_textbox,
benchmark_types,
similarity_tasks,
function_prediction_aspect,
function_dataset,
family_prediction_dataset,
save_checkbox,
],
)
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(refresh_data, outputs=[data_component])
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
show_copy_button=True,
)
block.launch()