Spaces:
Sleeping
Sleeping
import os | |
import pandas as pd | |
from huggingface_hub import HfApi | |
script_dir = os.path.dirname(os.path.abspath(__file__)) # Directory of the running script | |
def get_baseline_df(selected_methods, selected_metrics, leaderboard_path="/tmp/leaderboard_results.csv"): | |
if not os.path.exists(leaderboard_path): | |
benchmark_types = [] #only download leaderboard | |
download_from_hub(benchmark_types) | |
leaderboard_df = pd.read_csv(leaderboard_path) | |
if selected_methods is not None and selected_metrics is not None: | |
present_columns = ["Method"] + selected_metrics | |
leaderboard_df = leaderboard_df[leaderboard_df['Method'].isin(selected_methods)][present_columns] | |
return leaderboard_df | |
def save_results(method_name, benchmark_types, results, repo_id="mgyigit/probe-data", repo_type="space"): | |
#First, download files to be updated from {repo_id} | |
download_from_hub(benchmark_types, repo_id, repo_type) | |
#Update local files | |
for benchmark_type in benchmark_types: | |
if benchmark_type == 'similarity': | |
save_similarity_output(results['similarity'], method_name) | |
elif benchmark_type == 'function': | |
save_function_output(results['function'], method_name) | |
elif benchmark_type == 'family': | |
save_family_output(results['family'], method_name) | |
elif benchmark_type == "affinity": | |
save_affinity_output(results['affinity'], method_name) | |
#Upload local files to the {repo_id} | |
upload_to_hub(benchmark_types, repo_id, repo_type) | |
return 0 | |
def download_from_hub(benchmark_types, repo_id="mgyigit/probe-data", repo_type="space"): | |
api = HfApi(token=os.getenv("api-key")) #load api-key secret | |
benchmark_types.append("leaderboard") | |
for benchmark in benchmark_types: | |
file_name = f"{benchmark}_results.csv" | |
local_path = f"/tmp/{file_name}" | |
try: | |
# Download the file from the specified repo | |
api.hf_hub_download( | |
repo_id=repo_id, | |
repo_type=repo_type, | |
filename=file_name, | |
local_dir="/tmp", | |
token=os.getenv("api-key"), | |
) | |
print(f"Downloaded {file_name} from {repo_id} to {local_path}") | |
except Exception as e: | |
print(f"Failed to download {file_name}: {e}") | |
return 0 | |
def upload_to_hub(benchmark_types, repo_id="mgyigit/probe-data", repo_type="space"): | |
api = HfApi(token=os.getenv("api_key")) # Requires authentication via HF_TOKEN | |
for benchmark in benchmark_types: | |
file_name = f"{benchmark}_results.csv" | |
local_path = f"/tmp/{file_name}" | |
api.upload_file( | |
path_or_fileobj=local_path, | |
path_in_repo=file_name, | |
repo_id=repo_id, | |
repo_type=repo_type, | |
commit_message=f"Updating {file_name}" | |
) | |
print(f"Uploaded {local_path} to {repo_id}/{file_name}") | |
os.remove(local_path) | |
print(f"Removed local file: {local_path}") | |
return 0 | |
def save_similarity_output( | |
output_dict, | |
method_name, | |
leaderboard_path="/tmp/leaderboard_results.csv", | |
similarity_path="/tmp/similarity_results.csv", | |
): | |
# Load or initialize the DataFrames | |
if os.path.exists(leaderboard_path): | |
leaderboard_df = pd.read_csv(leaderboard_path) | |
else: | |
print("Leaderboard file not found!") | |
return -1 | |
if os.path.exists(similarity_path): | |
similarity_df = pd.read_csv(similarity_path) | |
else: | |
print("Similarity file not found!") | |
return -1 | |
if method_name not in similarity_df['Method'].values: | |
# Create a new row for the method with default values | |
new_row = {col: None for col in similarity_df.columns} | |
new_row['Method'] = method_name | |
similarity_df = pd.concat([similarity_df, pd.DataFrame([new_row])], ignore_index=True) | |
if method_name not in leaderboard_df['Method'].values: | |
new_row = {col: None for col in leaderboard_df.columns} | |
new_row['Method'] = method_name | |
leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame([new_row])], ignore_index=True) | |
averages = {} | |
for dataset in ['sparse', '200', '500']: | |
correlation_values = [] | |
pvalue_values = [] | |
for aspect in ['MF', 'BP', 'CC']: | |
correlation_key = f"{dataset}_{aspect}_correlation" | |
pvalue_key = f"{dataset}_{aspect}_pvalue" | |
# Update correlation if present | |
if correlation_key in output_dict: | |
correlation = output_dict[correlation_key].item() | |
correlation_values.append(correlation) | |
similarity_df.loc[similarity_df['Method'] == method_name, correlation_key] = correlation | |
leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"sim_{correlation_key}"] = correlation | |
# Update p-value if present | |
if pvalue_key in output_dict: | |
pvalue = output_dict[pvalue_key].item() | |
pvalue_values.append(pvalue) | |
similarity_df.loc[similarity_df['Method'] == method_name, pvalue_key] = pvalue | |
leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"sim_{pvalue_key}"] = pvalue | |
# Calculate averages if all three aspects are present | |
if len(correlation_values) == 3: | |
averages[f"{dataset}_Ave_correlation"] = sum(correlation_values) / 3 | |
similarity_df.loc[similarity_df['Method'] == method_name, f"{dataset}_Ave_correlation"] = averages[f"{dataset}_Ave_correlation"] | |
leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"sim_{dataset}_Ave_correlation"] = averages[f"{dataset}_Ave_correlation"] | |
if len(pvalue_values) == 3: | |
averages[f"{dataset}_Ave_pvalue"] = sum(pvalue_values) / 3 | |
similarity_df.loc[similarity_df['Method'] == method_name, f"{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"] | |
leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"sim_{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"] | |
leaderboard_df.to_csv(leaderboard_path, index=False) | |
similarity_df.to_csv(similarity_path, index=False) | |
return 0 | |
def save_function_output( | |
model_output, | |
method_name, | |
func_results_path="/tmp/function_results.csv", | |
leaderboard_path="/tmp/leaderboard_results.csv" | |
): | |
# Load or initialize the DataFrames | |
if os.path.exists(leaderboard_path): | |
leaderboard_df = pd.read_csv(leaderboard_path) | |
else: | |
print("Leaderboard file not found!") | |
return -1 | |
if os.path.exists(func_results_path): | |
func_results_df = pd.read_csv(func_results_path) | |
else: | |
print("Function file not found!") | |
return -1 | |
if method_name not in func_results_df['Method'].values: | |
# Create a new row for the method with default values | |
new_row = {col: None for col in func_results_df.columns} | |
new_row['Method'] = method_name | |
func_results_df = pd.concat([func_results_df, pd.DataFrame([new_row])], ignore_index=True) | |
if method_name not in leaderboard_df['Method'].values: | |
new_row = {col: None for col in leaderboard_df.columns} | |
new_row['Method'] = method_name | |
leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame([new_row])], ignore_index=True) | |
# Storage for averaging in leaderboard results | |
metrics_sum = { | |
'accuracy': {'BP': [], 'CC': [], 'MF': []}, | |
'F1': {'BP': [], 'CC': [], 'MF': []}, | |
'precision': {'BP': [], 'CC': [], 'MF': []}, | |
'recall': {'BP': [], 'CC': [], 'MF': []} | |
} | |
# Iterate over each entry in model_output | |
for entry in model_output: | |
key = entry[0] | |
accuracy, f1, precision, recall = entry[1], entry[4], entry[7], entry[10] | |
# Parse the key to extract the aspect and datasets | |
aspect, dataset1, dataset2 = key.split('_') | |
# Save each metric to function_results under its respective column | |
func_results_df.loc[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_accuracy"] = accuracy | |
func_results_df.loc[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_F1"] = f1 | |
func_results_df.loc[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_precision"] = precision | |
func_results_df.loc[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_recall"] = recall | |
# Add values for leaderboard averaging | |
metrics_sum['accuracy'][aspect].append(accuracy) | |
metrics_sum['F1'][aspect].append(f1) | |
metrics_sum['precision'][aspect].append(precision) | |
metrics_sum['recall'][aspect].append(recall) | |
# Calculate averages for each aspect and overall (if all aspects have entries) | |
for metric in ['accuracy', 'F1', 'precision', 'recall']: | |
for aspect in ['BP', 'CC', 'MF']: | |
if metrics_sum[metric][aspect]: | |
aspect_average = sum(metrics_sum[metric][aspect]) / len(metrics_sum[metric][aspect]) | |
leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"func_{aspect}_{metric}"] = aspect_average | |
# Calculate overall average if each aspect has entries | |
if all(metrics_sum[metric][aspect] for aspect in ['BP', 'CC', 'MF']): | |
overall_average = sum( | |
sum(metrics_sum[metric][aspect]) / len(metrics_sum[metric][aspect]) | |
for aspect in ['BP', 'CC', 'MF'] | |
) / 3 | |
leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"func_Ave_{metric}"] = overall_average | |
# Save updated DataFrames to CSV | |
func_results_df.to_csv(func_results_path, index=False) | |
leaderboard_df.to_csv(leaderboard_path, index=False) | |
return 0 | |
def save_family_output( | |
model_output, | |
method_name, | |
leaderboard_path="/tmp/leaderboard_results.csv", | |
family_results_path="/tmp/family_results.csv" | |
): | |
# Load or initialize the DataFrames | |
if os.path.exists(leaderboard_path): | |
leaderboard_df = pd.read_csv(leaderboard_path) | |
else: | |
print("Leaderboard file not found!") | |
return -1 | |
if os.path.exists(family_results_path): | |
family_results_df = pd.read_csv(family_results_path) | |
else: | |
print("Family file not found!") | |
return -1 | |
if method_name not in family_results_df['Method'].values: | |
# Create a new row for the method with default values | |
new_row = {col: None for col in family_results_df.columns} | |
new_row['Method'] = method_name | |
family_results_df = pd.concat([family_results_df, pd.DataFrame([new_row])], ignore_index=True) | |
if method_name not in leaderboard_df['Method'].values: | |
new_row = {col: None for col in leaderboard_df.columns} | |
new_row['Method'] = method_name | |
leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame([new_row])], ignore_index=True) | |
# Iterate through the datasets and metrics | |
for dataset, metrics in model_output.items(): | |
for metric, values in metrics.items(): | |
# Calculate the average for each metric in leaderboard results | |
avg_value = sum(values) / len(values) if values else None | |
leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"fam_{dataset}_{metric}_ave"] = avg_value | |
# Save each fold result for family results | |
for i, value in enumerate(values): | |
family_results_df.loc[family_results_df['Method'] == method_name, f"{dataset}_{metric}_{i}"] = value | |
# Save updated DataFrames to CSV | |
leaderboard_df.to_csv(leaderboard_path, index=False) | |
family_results_df.to_csv(family_results_path, index=False) | |
return 0 | |
def save_affinity_output( | |
model_output, | |
method_name, | |
leaderboard_path="/tmp/leaderboard_results.csv", | |
affinity_results_path="/tmp/affinity_results.csv" | |
): | |
# Load or initialize the DataFrames | |
if os.path.exists(leaderboard_path): | |
leaderboard_df = pd.read_csv(leaderboard_path) | |
else: | |
print("Leaderboard file not found!") | |
return -1 | |
if os.path.exists(affinity_results_path): | |
affinity_results_df = pd.read_csv(affinity_results_path) | |
else: | |
print("Affinity file not found!") | |
return -1 | |
if method_name not in affinity_results_df['Method'].values: | |
# Create a new row for the method with default values | |
new_row = {col: None for col in affinity_results_df.columns} | |
new_row['Method'] = method_name | |
affinity_results_df = pd.concat([affinity_results_df, pd.DataFrame([new_row])], ignore_index=True) | |
if method_name not in leaderboard_df['Method'].values: | |
new_row = {col: None for col in leaderboard_df.columns} | |
new_row['Method'] = method_name | |
leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame([new_row])], ignore_index=True) | |
# Process 'summary' section for leaderboard results | |
summary = model_output.get('summary', {}) | |
if summary: | |
leaderboard_df.loc[leaderboard_df['Method'] == method_name, 'aff_mse_ave'] = summary.get('val_mse_error') | |
leaderboard_df.loc[leaderboard_df['Method'] == method_name, 'aff_mae_ave'] = summary.get('val_mae_error') | |
leaderboard_df.loc[leaderboard_df['Method'] == method_name, 'aff_corr_ave'] = summary.get('validation_corr') | |
# Process 'detail' section for affinity results | |
detail = model_output.get('detail', {}) | |
if detail: | |
# Save each 10-fold cross-validation result for mse, mae, and corr | |
for i in range(10): | |
if 'val_mse_errors' in detail: | |
affinity_results_df.loc[affinity_results_df['Method'] == method_name, f"mse_{i}"] = detail['val_mse_errors'][i] | |
if 'val_mae_errors' in detail: | |
affinity_results_df.loc[affinity_results_df['Method'] == method_name, f"mae_{i}"] = detail['val_mae_errors'][i] | |
if 'validation_corrs' in detail: | |
affinity_results_df.loc[affinity_results_df['Method'] == method_name, f"correlation_{i}"] = detail['validation_corrs'][i] | |
# Save updated DataFrames to CSV | |
leaderboard_df.to_csv(leaderboard_path, index=False) | |
affinity_results_df.to_csv(affinity_results_path, index=False) | |
return 0 | |