PROBE / src /bin /binding_affinity_estimator.py
mgyigit's picture
Update src/bin/binding_affinity_estimator.py
de474d4 verified
raw
history blame
6.83 kB
import tqdm
import multiprocessing
import pandas as pd
import numpy as np
import scipy.stats
import os
import sys
script_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append('..')
sys.path.append('.')
from sklearn import linear_model
from sklearn.model_selection import KFold
from sklearn.metrics import mean_squared_error, mean_absolute_error
from sklearn.preprocessing import MinMaxScaler
skempi_vectors_path = None
representation_name = None
def load_representation(multi_col_representation_vector_file_path):
print("\nLoading representation vectors...\n")
multi_col_representation_vector = pd.read_csv(multi_col_representation_vector_file_path)
vals = multi_col_representation_vector.iloc[:, 1:(len(multi_col_representation_vector.columns))]
original_values_as_df = pd.DataFrame({'PDB_ID': pd.Series([], dtype='str'), 'Vector': pd.Series([], dtype='object')})
for index, row in tqdm.tqdm(vals.iterrows(), total=len(vals)):
list_of_floats = [float(item) for item in list(row)]
original_values_as_df.loc[index] = [multi_col_representation_vector.iloc[index]['PDB_ID']] + [list_of_floats]
return original_values_as_df
def calc_train_error(X_train, y_train, model):
'''Returns in-sample error for an already fit model.'''
predictions = model.predict(X_train)
mse = mean_squared_error(y_train, predictions)
mae = mean_absolute_error(y_train, predictions)
corr = scipy.stats.pearsonr(y_train, predictions)
return mse, mae, corr
def calc_validation_error(X_test, y_test, model):
'''Returns out-of-sample error for an already fit model.'''
predictions = model.predict(X_test)
mse = mean_squared_error(y_test, predictions)
mae = mean_absolute_error(y_test, predictions)
corr = scipy.stats.pearsonr(y_test, predictions)
return mse, mae, corr
def calc_metrics(X_train, y_train, X_test, y_test, model):
'''Fits the model and returns the metrics for in-sample and out-of-sample errors.'''
model.fit(X_train, y_train)
#train_mse_error, train_mae_error, train_corr = calc_train_error(X_train, y_train, model)
val_mse_error, val_mae_error, val_corr = calc_validation_error(X_test, y_test, model)
return val_mse_error, val_mae_error, val_corr
def report_results(
validation_mse_error_list,
validation_mae_error_list,
validation_corr_list,
validation_corr_pval_list,
):
result_summary = {
"val_mse_error": round(np.mean(validation_mse_error_list) * 100, 4),
"val_mse_std": round(np.std(validation_mse_error_list) * 100, 4),
"val_mae_error": round(np.mean(validation_mae_error_list) * 100, 4),
"val_mae_std": round(np.std(validation_mae_error_list) * 100, 4),
"validation_corr": round(np.mean(validation_corr_list), 4),
"validation_corr_pval": round(np.mean(validation_corr_pval_list), 4),
}
result_detail = {
"val_mse_errors": list(np.multiply(validation_mse_error_list, 100)),
"val_mae_errors": list(np.multiply(validation_mae_error_list, 100)),
"validation_corrs": list(np.multiply(validation_corr_list, 100)),
"validation_corr_pvals": list(np.multiply(validation_corr_pval_list, 100)),
}
return result_summary, result_detail
def predictAffinityWithModel(regressor_model, multiplied_vectors_df):
K = 10
kf = KFold(n_splits=K, shuffle=True, random_state=42)
train_mse_error_list = []
validation_mse_error_list = []
train_mae_error_list = []
validation_mae_error_list = []
train_corr_list = []
validation_corr_list = []
train_corr_pval_list = []
validation_corr_pval_list = []
data = np.array(np.asarray(multiplied_vectors_df["Vector"].tolist()), dtype=float)
ppi_affinity_filtered_df = ppi_affinity_df[
ppi_affinity_df['Protein1'].isin(multiplied_vectors_df['Protein1']) &
ppi_affinity_df['Protein2'].isin(multiplied_vectors_df['Protein2'])
]
target = np.array(ppi_affinity_filtered_df["Affinity"])
scaler = MinMaxScaler()
scaler.fit(target.reshape(-1, 1))
target = scaler.transform(target.reshape(-1, 1))[:, 0]
for train_index, val_index in tqdm.tqdm(kf.split(data, target), total=K):
# split data
X_train, X_val = data[train_index], data[val_index]
y_train, y_val = target[train_index], target[val_index]
# instantiate model
reg = regressor_model
# calculate errors
(
val_mse_error,
val_mae_error,
val_corr,
) = calc_metrics(X_train, y_train, X_val, y_val, reg)
# append to appropriate lists
validation_mse_error_list.append(val_mse_error)
validation_mae_error_list.append(val_mae_error)
validation_corr_list.append(val_corr[0])
validation_corr_pval_list.append(val_corr[1])
return report_results(
validation_mse_error_list,
validation_mae_error_list,
validation_corr_list,
validation_corr_pval_list,
)
ppi_affinity_file_path = "../data/auxilary_input/skempi_pipr/SKEMPI_all_dg_avg.txt"
ppi_affinity_file = os.path.join(script_dir, ppi_affinity_file_path)
ppi_affinity_df = pd.read_csv(ppi_affinity_file, sep="\t", header=None)
ppi_affinity_df.columns = ['Protein1', 'Protein2', 'Affinity']
def calculate_vector_multiplications(skempi_vectors_df):
multiplied_vectors = pd.DataFrame({
'Protein1': pd.Series([], dtype='str'),
'Protein2': pd.Series([], dtype='str'),
'Vector': pd.Series([], dtype='object')
})
print("Element-wise vector multiplications are being calculated")
rep_prot_list = list(skempi_vectors_df['PDB_ID'])
for index, row in tqdm.tqdm(ppi_affinity_df.iterrows()):
if row['Protein1'] in rep_prot_list and row['Protein2'] in rep_prot_list:
vec1 = list(skempi_vectors_df[skempi_vectors_df['PDB_ID'] == row['Protein1']]['Vector'])[0]
vec2 = list(skempi_vectors_df[skempi_vectors_df['PDB_ID'] == row['Protein2']]['Vector'])[0]
multiplied_vec = np.multiply(vec1, vec2)
multiplied_vectors = multiplied_vectors.append({
'Protein1': row['Protein1'],
'Protein2': row['Protein2'],
'Vector': multiplied_vec
}, ignore_index=True)
return multiplied_vectors
def predict_affinities_and_report_results():
skempi_vectors_df = load_representation(skempi_vectors_path)
multiplied_vectors_df = calculate_vector_multiplications(skempi_vectors_df)
model = linear_model.BayesianRidge()
result_summary, result_detail = predictAffinityWithModel(model, multiplied_vectors_df)
# Return the results as a dictionary instead of writing to a file
return {'summary': result_summary,
'detail': result_detail}