PROBE / src /saving_utils.py
mgyigit's picture
Rename src/utils.py to src/saving_utils.py
d0be4f7 verified
raw
history blame
10.5 kB
import pandas as pd
import os
import sys
script_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append('..')
sys.path.append('.')
def save_similarity_output(output_dict, method_name, leaderboard_path="./data/leaderboard_results.csv", similarity_path="./data/similarity_results.csv"):
# Load or initialize the DataFrames
if os.path.exists(leaderboard_path):
leaderboard_df = pd.read_csv(leaderboard_path)
else:
leaderboard_df = pd.DataFrame()
if os.path.exists(similarity_path):
similarity_df = pd.read_csv(similarity_path)
else:
similarity_df = pd.DataFrame(columns=['Method'])
# Check if method exists in similarity results
if method_name not in similarity_df['Method'].values:
similarity_df = pd.concat([similarity_df, pd.DataFrame({'Method': [method_name]})], ignore_index=True)
# Initialize storage for averages
averages = {}
# Iterate through the output_dict and calculate averages if all aspects (MF, CC, BP) are present
for dataset in ['sparse', '200', '500']:
correlation_values = []
pvalue_values = []
# Check each aspect within the dataset (MF, BP, CC)
for aspect in ['MF', 'BP', 'CC']:
correlation_key = f"{dataset}_{aspect}_correlation"
pvalue_key = f"{dataset}_{aspect}_pvalue"
# Process correlation if present
if correlation_key in output_dict:
correlation_values.append(output_dict[correlation_key])
similarity_df.at[similarity_df['Method'] == method_name, f"{dataset}_{aspect}_correlation"] = output_dict[correlation_key]
leaderboard_df.at[0, f"sim_{dataset}_{aspect}_correlation"] = output_dict[correlation_key]
# Process pvalue if present
if pvalue_key in output_dict:
pvalue_values.append(output_dict[pvalue_key])
similarity_df.at[similarity_df['Method'] == method_name, f"{dataset}_{aspect}_pvalue"] = output_dict[pvalue_key]
leaderboard_df.at[0, f"sim_{dataset}_{aspect}_pvalue"] = output_dict[pvalue_key]
# Calculate averages if all three aspects (MF, BP, CC) are present
if len(correlation_values) == 3:
averages[f"{dataset}_Ave_correlation"] = sum(correlation_values) / 3
similarity_df.at[similarity_df['Method'] == method_name, f"{dataset}_Ave_correlation"] = averages[f"{dataset}_Ave_correlation"]
leaderboard_df.at[0, f"sim_{dataset}_Ave_correlation"] = averages[f"{dataset}_Ave_correlation"]
if len(pvalue_values) == 3:
averages[f"{dataset}_Ave_pvalue"] = sum(pvalue_values) / 3
similarity_df.at[similarity_df['Method'] == method_name, f"{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
leaderboard_df.at[0, f"sim_{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
# Save the updated DataFrames back to CSV
leaderboard_df.to_csv(leaderboard_path, index=False)
similarity_df.to_csv(similarity_path, index=False)
return 0
def save_function_output(model_output, method_name, func_results_path="./data/function_results.csv", leaderboard_path="./data/leaderboard_results.csv"):
# Load or initialize the DataFrames
if os.path.exists(func_results_path):
func_results_df = pd.read_csv(func_results_path)
else:
func_results_df = pd.DataFrame(columns=['Method'])
if os.path.exists(leaderboard_path):
leaderboard_df = pd.read_csv(leaderboard_path)
else:
leaderboard_df = pd.DataFrame()
# Ensure the method_name row exists in function results
if method_name not in func_results_df['Method'].values:
func_results_df = pd.concat([func_results_df, pd.DataFrame({'Method': [method_name]})], ignore_index=True)
# Storage for averaging in leaderboard results
metrics_sum = {
'accuracy': {'BP': [], 'CC': [], 'MF': []},
'F1': {'BP': [], 'CC': [], 'MF': []},
'precision': {'BP': [], 'CC': [], 'MF': []},
'recall': {'BP': [], 'CC': [], 'MF': []}
}
# Iterate over each entry in model_output
for entry in model_output:
key = entry[0]
accuracy, f1, precision, recall = entry[1], entry[4], entry[7], entry[10]
# Parse the key to extract the aspect and datasets
aspect, dataset1, dataset2 = key.split('_')
# Save each metric to function_results under its respective column
func_results_df.at[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_accuracy"] = accuracy
func_results_df.at[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_F1"] = f1
func_results_df.at[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_precision"] = precision
func_results_df.at[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_recall"] = recall
# Add values for leaderboard averaging
metrics_sum['accuracy'][aspect].append(accuracy)
metrics_sum['F1'][aspect].append(f1)
metrics_sum['precision'][aspect].append(precision)
metrics_sum['recall'][aspect].append(recall)
# Calculate averages for each aspect and overall (if all aspects have entries)
for metric in ['accuracy', 'F1', 'precision', 'recall']:
for aspect in ['BP', 'CC', 'MF']:
if metrics_sum[metric][aspect]:
aspect_average = sum(metrics_sum[metric][aspect]) / len(metrics_sum[metric][aspect])
leaderboard_df.at[0, f"func_{aspect}_{metric}"] = aspect_average
# Calculate overall average if each aspect has entries
if all(metrics_sum[metric][aspect] for aspect in ['BP', 'CC', 'MF']):
overall_average = sum(
sum(metrics_sum[metric][aspect]) / len(metrics_sum[metric][aspect])
for aspect in ['BP', 'CC', 'MF']
) / 3
leaderboard_df.at[0, f"func_Ave_{metric}"] = overall_average
# Save updated DataFrames to CSV
func_results_df.to_csv(func_results_path, index=False)
leaderboard_df.to_csv(leaderboard_path, index=False)
return 0
def save_family_output(model_output, method_name, leaderboard_path="./data/leaderboard_results.csv", family_results_path="./data/family_results.csv"):
# Load or initialize the DataFrames
if os.path.exists(leaderboard_path):
leaderboard_df = pd.read_csv(leaderboard_path)
else:
leaderboard_df = pd.DataFrame(columns=['Method'])
if os.path.exists(family_results_path):
family_results_df = pd.read_csv(family_results_path)
else:
family_results_df = pd.DataFrame(columns=['Method'])
# Ensure the method_name row exists in the leaderboard results
if method_name not in leaderboard_df['Method'].values:
leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame({'Method': [method_name]})], ignore_index=True)
# Ensure the method_name row exists in family results
if method_name not in family_results_df['Method'].values:
family_results_df = pd.concat([family_results_df, pd.DataFrame({'Method': [method_name]})], ignore_index=True)
# Iterate through the datasets and metrics
for dataset, metrics in model_output.items():
for metric, values in metrics.items():
# Calculate the average for each metric in leaderboard results
avg_value = sum(values) / len(values) if values else None
leaderboard_df.at[leaderboard_df['Method'] == method_name, f"fam_{dataset}_{metric}_ave"] = avg_value
# Save each fold result for family results
for i, value in enumerate(values):
family_results_df.at[family_results_df['Method'] == method_name, f"{dataset}_{metric}_{i}"] = value
# Save updated DataFrames to CSV
leaderboard_df.to_csv(leaderboard_path, index=False)
family_results_df.to_csv(family_results_path, index=False)
return leaderboard_df, family_results_df
def save_affinity_output(model_output, method_name, leaderboard_path="./data/leaderboard_results.csv", affinity_results_path="./data/affinity_results.csv"):
# Load or initialize DataFrames
if os.path.exists(leaderboard_path):
leaderboard_df = pd.read_csv(leaderboard_path)
else:
leaderboard_df = pd.DataFrame(columns=['Method'])
if os.path.exists(affinity_results_path):
affinity_results_df = pd.read_csv(affinity_results_path)
else:
affinity_results_df = pd.DataFrame(columns=['Method'])
# Ensure the method_name row exists in the leaderboard results
if method_name not in leaderboard_df['Method'].values:
leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame({'Method': [method_name]})], ignore_index=True)
# Ensure the method_name row exists in affinity results
if method_name not in affinity_results_df['Method'].values:
affinity_results_df = pd.concat([affinity_results_df, pd.DataFrame({'Method': [method_name]})], ignore_index=True)
# Process 'summary' section for leaderboard results
summary = model_output.get('summary', {})
if summary:
leaderboard_df.at[leaderboard_df['Method'] == method_name, 'aff_mse_ave'] = summary.get('val_mse_error')
leaderboard_df.at[leaderboard_df['Method'] == method_name, 'aff_mae_ave'] = summary.get('val_mae_error')
leaderboard_df.at[leaderboard_df['Method'] == method_name, 'aff_corr_ave'] = summary.get('validation_corr')
# Process 'detail' section for affinity results
detail = model_output.get('detail', {})
if detail:
# Save each 10-fold cross-validation result for mse, mae, and corr
for i in range(10):
if 'val_mse_errors' in detail:
affinity_results_df.at[affinity_results_df['Method'] == method_name, f"mse_{i}"] = detail['val_mse_errors'][i]
if 'val_mae_errors' in detail:
affinity_results_df.at[affinity_results_df['Method'] == method_name, f"mae_{i}"] = detail['val_mae_errors'][i]
if 'validation_corrs' in detail:
affinity_results_df.at[affinity_results_df['Method'] == method_name, f"corr_{i}"] = detail['validation_corrs'][i]
# Save updated DataFrames to CSV
leaderboard_df.to_csv(leaderboard_path, index=False)
affinity_results_df.to_csv(affinity_results_path, index=False)
return 0