mgyigit commited on
Commit
d0bb85f
1 Parent(s): e90a921

Update inference.py

Browse files
Files changed (1) hide show
  1. inference.py +9 -9
inference.py CHANGED
@@ -113,7 +113,7 @@ class Inference(object):
113
 
114
  def decoder_load(self, dictionary_name):
115
  ''' Loading the atom and bond decoders'''
116
- with open("DrugGEN/data/decoders/" + dictionary_name + "_" + self.dataset_name + '.pkl', 'rb') as f:
117
  return pickle.load(f)
118
 
119
 
@@ -139,16 +139,16 @@ class Inference(object):
139
  self.restore_model(self.submodel, self.inference_model)
140
 
141
  # smiles data for metrics calculation.
142
- chembl_smiles = [line for line in open("DrugGEN/data/chembl_train.smi", 'r').read().splitlines()]
143
- chembl_test = [line for line in open("DrugGEN/data/chembl_test.smi", 'r').read().splitlines()]
144
- drug_smiles = [line for line in open("DrugGEN/data/akt_inhibitors.smi", 'r').read().splitlines()]
145
  drug_mols = [Chem.MolFromSmiles(smi) for smi in drug_smiles]
146
  drug_vecs = [AllChem.GetMorganFingerprintAsBitVect(x, 2, nBits=1024) for x in drug_mols if x is not None]
147
 
148
 
149
  # Make directories if not exist.
150
- if not os.path.exists("DrugGEN/experiments/inference/{}".format(self.submodel)):
151
- os.makedirs("DrugGEN/experiments/inference/{}".format(self.submodel))
152
 
153
 
154
  self.G.eval()
@@ -197,7 +197,7 @@ class Inference(object):
197
  if molecules is None:
198
  none_counter += 1
199
 
200
- with open("DrugGEN/experiments/inference/{}/inference_drugs.txt".format(self.submodel), "a") as f:
201
  for molecules in inference_drugs:
202
  if molecules is not None:
203
  molecules = molecules.replace("*", "C")
@@ -245,9 +245,9 @@ if __name__=="__main__":
245
 
246
  # Data configuration.
247
  parser.add_argument('--inf_dataset_file', type=str, default='chembl45_test.pt')
248
- parser.add_argument('--inf_raw_file', type=str, default='DrugGEN/data/chembl_test.smi')
249
  parser.add_argument('--inf_batch_size', type=int, default=1, help='Batch size for inference')
250
- parser.add_argument('--mol_data_dir', type=str, default='DrugGEN/data')
251
  parser.add_argument('--features', type=str2bool, default=False, help='features dimension for nodes')
252
 
253
  # Model configuration.
 
113
 
114
  def decoder_load(self, dictionary_name):
115
  ''' Loading the atom and bond decoders'''
116
+ with open("data/decoders/" + dictionary_name + "_" + self.dataset_name + '.pkl', 'rb') as f:
117
  return pickle.load(f)
118
 
119
 
 
139
  self.restore_model(self.submodel, self.inference_model)
140
 
141
  # smiles data for metrics calculation.
142
+ chembl_smiles = [line for line in open("data/chembl_train.smi", 'r').read().splitlines()]
143
+ chembl_test = [line for line in open("data/chembl_test.smi", 'r').read().splitlines()]
144
+ drug_smiles = [line for line in open("data/akt_inhibitors.smi", 'r').read().splitlines()]
145
  drug_mols = [Chem.MolFromSmiles(smi) for smi in drug_smiles]
146
  drug_vecs = [AllChem.GetMorganFingerprintAsBitVect(x, 2, nBits=1024) for x in drug_mols if x is not None]
147
 
148
 
149
  # Make directories if not exist.
150
+ if not os.path.exists("experiments/inference/{}".format(self.submodel)):
151
+ os.makedirs("experiments/inference/{}".format(self.submodel))
152
 
153
 
154
  self.G.eval()
 
197
  if molecules is None:
198
  none_counter += 1
199
 
200
+ with open("experiments/inference/{}/inference_drugs.txt".format(self.submodel), "a") as f:
201
  for molecules in inference_drugs:
202
  if molecules is not None:
203
  molecules = molecules.replace("*", "C")
 
245
 
246
  # Data configuration.
247
  parser.add_argument('--inf_dataset_file', type=str, default='chembl45_test.pt')
248
+ parser.add_argument('--inf_raw_file', type=str, default='data/chembl_test.smi')
249
  parser.add_argument('--inf_batch_size', type=int, default=1, help='Batch size for inference')
250
+ parser.add_argument('--mol_data_dir', type=str, default='data')
251
  parser.add_argument('--features', type=str2bool, default=False, help='features dimension for nodes')
252
 
253
  # Model configuration.