Spaces:
Running
Running
import torch | |
def discriminator_loss(generator, discriminator, drug_edge, drug_node, batch_size, device, grad_pen, lambda_gp, z_edge, z_node, submodel): | |
# Compute loss with real molecules. | |
if submodel == "DrugGEN": | |
logits_real_disc = discriminator(drug_edge, drug_node) | |
else: | |
logits_real_disc = discriminator(drug_node) | |
prediction_real = - torch.mean(logits_real_disc) | |
# Compute loss with fake molecules. | |
node, edge, node_sample, edge_sample = generator(z_edge, z_node) | |
if submodel == "DrugGEN": | |
logits_fake_disc = discriminator(edge_sample, node_sample) | |
else: | |
graph = torch.cat((node_sample.view(batch_size, -1), edge_sample.view(batch_size, -1)), dim=-1) | |
logits_fake_disc = discriminator(graph.detach()) | |
prediction_fake = torch.mean(logits_fake_disc) | |
# Compute gradient penalty. | |
eps_edge = torch.rand(batch_size, 1, 1, 1, device=device) # Shape adapted for broadcasting with edges and nodes | |
eps_node = torch.rand(batch_size, 1, 1, device=device) # Shape adapted for broadcasting with edges and nodes | |
int_node = eps_node * drug_node + (1 - eps_node) * node_sample | |
int_edge = eps_edge * drug_edge + (1 - eps_edge) * edge_sample | |
int_node.requires_grad_(True) | |
int_edge.requires_grad_(True) | |
# Compute discriminator output for interpolated samples | |
if submodel == "DrugGEN": | |
logits_interpolated = discriminator(int_edge, int_node) | |
else: | |
graph = torch.cat((int_node.view(batch_size, -1), int_edge.view(batch_size, -1)), dim=-1) | |
logits_interpolated = discriminator(graph) | |
# Compute gradient penalty for nodes and edges | |
grad_penalty = grad_pen(logits_interpolated, int_node) | |
# Calculate total discriminator loss | |
d_loss = prediction_fake + prediction_real + lambda_gp * grad_penalty | |
return node, edge, d_loss | |
def generator_loss(generator, discriminator, adj, annot, batch_size, submodel): | |
# Compute loss with fake molecules. | |
node, edge, node_sample, edge_sample = generator(adj, annot) | |
if submodel == "DrugGEN": | |
logits_fake_disc = discriminator(edge_sample, node_sample) | |
else: | |
graph = torch.cat((node_sample.view(batch_size, -1), edge_sample.view(batch_size, -1)), dim=-1) | |
logits_fake_disc = discriminator(graph) | |
prediction_fake = - torch.mean(logits_fake_disc) | |
g_loss = prediction_fake | |
return g_loss, node, edge, node_sample, edge_sample | |