DrugGEN / layers.py
mgyigit's picture
Upload 11 files
8279c69
raw
history blame
3.17 kB
import torch
import torch.nn as nn
from torch.nn import functional as F
import math
class MLP(nn.Module):
def __init__(self, in_feat, hid_feat=None, out_feat=None, dropout=0.):
super().__init__()
if not hid_feat:
hid_feat = in_feat
if not out_feat:
out_feat = in_feat
self.fc1 = nn.Linear(in_feat, hid_feat)
self.act = torch.nn.ReLU()
self.fc2 = nn.Linear(hid_feat,out_feat)
self.droprateout = nn.Dropout(dropout)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.fc2(x)
return self.droprateout(x)
class Attention_new(nn.Module):
def __init__(self, dim, heads, attention_dropout=0.):
super().__init__()
assert dim % heads == 0
self.heads = heads
self.scale = 1./dim**0.5
self.q = nn.Linear(dim, dim)
self.k = nn.Linear(dim, dim)
self.v = nn.Linear(dim, dim)
self.e = nn.Linear(dim, dim)
self.d_k = dim // heads
self.heads = heads
self.out_e = nn.Linear(dim,dim)
self.out_n = nn.Linear(dim, dim)
def forward(self, node, edge):
b, n, c = node.shape
q_embed = self.q(node).view(-1, n, self.heads, c//self.heads)
k_embed = self.k(node).view(-1, n, self.heads, c//self.heads)
v_embed = self.v(node).view(-1, n, self.heads, c//self.heads)
e_embed = self.e(edge).view(-1, n, n, self.heads, c//self.heads)
q_embed = q_embed.unsqueeze(2)
k_embed = k_embed.unsqueeze(1)
attn = q_embed * k_embed
attn = attn/ math.sqrt(self.d_k)
attn = attn * (e_embed + 1) * e_embed
edge = self.out_e(attn.flatten(3))
attn = F.softmax(attn, dim=2)
v_embed = v_embed.unsqueeze(1)
v_embed = attn * v_embed
v_embed = v_embed.sum(dim=2).flatten(2)
node = self.out_n(v_embed)
return node, edge
class Encoder_Block(nn.Module):
def __init__(self, dim, heads, act, mlp_ratio=4, drop_rate=0.):
super().__init__()
self.ln1 = nn.LayerNorm(dim)
self.attn = Attention_new(dim, heads, drop_rate)
self.ln3 = nn.LayerNorm(dim)
self.ln4 = nn.LayerNorm(dim)
self.mlp = MLP(dim, dim*mlp_ratio, dim, dropout=drop_rate)
self.mlp2 = MLP(dim, dim*mlp_ratio, dim, dropout=drop_rate)
self.ln5 = nn.LayerNorm(dim)
self.ln6 = nn.LayerNorm(dim)
def forward(self, x, y):
x1 = self.ln1(x)
x2,y1 = self.attn(x1,y)
x2 = x1 + x2
y2 = y1 + y
x2 = self.ln3(x2)
y2 = self.ln4(y2)
x = self.ln5(x2 + self.mlp(x2))
y = self.ln6(y2 + self.mlp2(y2))
return x, y
class TransformerEncoder(nn.Module):
def __init__(self, dim, depth, heads, act, mlp_ratio=4, drop_rate=0.1):
super().__init__()
self.Encoder_Blocks = nn.ModuleList([
Encoder_Block(dim, heads, act, mlp_ratio, drop_rate)
for i in range(depth)])
def forward(self, x, y):
for Encoder_Block in self.Encoder_Blocks:
x, y = Encoder_Block(x,y)
return x, y